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1 Introduction

Q stands for “equational”, so Q, in a nutshell, is a programming language which lets
you “program by equations”. You specify a system of equations which the interpreter uses
as “rewrite rules” to reduce expressions to “normal form”. This allows you to formulate
your programs in a high-level, concise and declarative style. Q’s development started out
in the 1990s, motivated by the author’s research on term pattern matching [Gräf 1991]
and inspired by the pioneering work on equational programming by Michael O’Donnell and
others [O’Donnell 1985], as an attempt to show that term rewriting would provide a feasible
basis for a practical programming language. I think that this goal has been achieved, and
that the present interpreter is efficient and robust enough for practical purposes. Q has
been ported to a variety of operating systems, such as BeOS, FreeBSD, Linux, MacOS X,
Solaris and Windows. Porting to other modern UNIX/POSIX environments should be a
piece of cake. Thus Q can be used on most modern computer systems, and Q scripts written
on one system will usually run on all supported platforms.

The Q language supports a rich variety of built-in types, like arbitrary precision integers,
floating point numbers (double precision 64 bit), truth values, strings, lists and files. It also
provides primitives for exception handling and multithreaded execution. Q scripts can be
broken down into “modules”, each with their separate namespace, and Q gives you full
control over which symbols (function, variable and type names) are imported and exported
by each module. This makes it easy to organize large scripts in a modular fashion. Q
also allows you to interface to “external” modules written in the C programming language,
which provides a means to access functions in C libraries and employ C’s higher processing
speed for time-critical tasks.

As a practical programming language, Q comes with “batteries included”: A compre-
hensive standard library, written mostly in Q itself, provides a complex number type, a lot
of useful list processing functions (including list comprehensions), a “lazy” (call-by-need)
list data structure (a.k.a. “streams”), many common container data structures (dictionar-
ies, sets, etc.), the lambda calculus, and operations for creating PostScript graphics. It
also includes an extensive system interface which offers services such as binary and C-style
formatted I/O, BSD socket I/O, process management, POSIX multithreading and regular
expression matching. Additional extension modules for interfacing to GNU Octave, Tcl/Tk,
GGI, IBM’s Data Explorer and ODBC-compatible databases make Q a valuable tool for
scientific programming and other advanced applications.

In difference to other functional languages, Q is entirely based on the notions of rewrite
rules, reductions and irreducible expressions (also known as normal forms) pertaining to
the term rewriting calculus. A Q “program”, called a script, consists of equations which
are treated as rewrite rules and are used to reduce expressions to normal form. The normal
form of an expression denotes its value, which can itself be a compound expression. Q has
no rigid distinction between “constructor” and “defined” function symbols and it also allows
you to evaluate expressions containing “free” variables. Basically, both sides of an equation
may involve arbitrary expressions. Therefore Q can also be used as a tool for symbolic
expression evaluation. Q’s symbolic processing capabilities are best illustrated by the fact
that advanced features such as the lambda calculus and list comprehensions are not built
into the language, but are provided by scripts written in the Q language.
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On the surface, Q looks very much like contemporary functional languages such as Mi-
randa or Haskell. In fact, the syntax of the language has largely been inspired by the book
Introduction to Functional Programming by Richard Bird and Philip Wadler. However,
Q is an interpreted language with dynamic typing and eager (leftmost-innermost) evalua-
tion, which is more in line with classical functional languages such as Lisp. For the sake
of efficiency, Q scripts are first translated into “bytecode” (an intermediate binary format)
which is executed on a virtual stack machine. The interpreter automatically optimizes tail
recursion, such that “iterative” algorithms can be realized in constant stack space. Besides
the built-in I/O operations, the language is free of side-effects; in particular, Q does not
have mutable variables. Q also provides two novel and (IMHO) interesting features: a
notion of special forms which allows to handle lazy evaluation in an (almost) transparent
manner without having to give up the basic eager evaluation strategy; and a notion of type
guards which provides a means to cope with hierarchies of abstract data types (similar to
the notion of classes with single inheritance in object-oriented languages) in the context of
a term rewriting language.

Using Q is supposed to be fairly simple: you throw together some equations, start the
interpreter and then type in the expressions you wish to evaluate. All this can be done with
a few keystrokes, if you use the Emacs Q mode supplied with the package. A graphical user
interface for Windows is also available. Of course, you can also run the Q programming
utilities from the command line if you prefer that.

The manual is organized as follows. In Chapter 2 [Getting Started], page 5, we start out
with a brief and informal introduction to the main features of the language, and a glimpse
of how Q scripts look like. Chapter 3 [Lexical Matters], page 19, describes the lexical part of
the Q language. In Chapter 4 [Scripts and Modules], page 23, we discuss how declarations,
definitions and equations are put together to form a script, and how to break down larger
scripts into a collection of smaller modules which can be managed separately. Chapter 5
[Declarations], page 25, discusses how certain entities like types, variables and function
symbols can be declared in a Q script. Chapter 6 [Expressions], page 29, treats the syntax
of Q expressions, and describes the built-in operators provided by the Q language. Chapter 7
[Equations and Expression Evaluation], page 41, is about equations and variable definitions,
and how they are used in the evaluation process. Chapter 8 [Types], page 61, and Chapter 9
[Special Forms], page 69, describe the facilities provided by the Q language for dealing with
abstract data types and deferred evaluation. Chapter 10 [Built-In Functions], page 77,
and Chapter 11 [The Standard Library], page 93, discuss the built-in and standard library
functions of the Q language. Chapter 12 [Clib], page 119, describes Q’s “system module”
which provides access to some important functions from the C library. The appendix
gives additional information about some aspects of the language and its implementation.
Appendix A [Q Language Grammar], page 171, contains a summary of the Q language
syntax in BNF. Appendix B [Using Q], page 175, provides a description of the programming
tools included in the Q programming system, Appendix C [C Language Interface], page 191,
describes Q’s interface to the C programming language, and Appendix D [Debugging],
page 199, is a brief introduction to the symbolic debugger built into the Q interpreter.
Finally, Appendix E [Running Scripts in Emacs], page 203, discusses how Q scripts can be
edited and run using the Emacs editor.
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2 Getting Started

A new programming language is best conveyed through some examples, and therefore
it is common practice to start a language description with an introductory chapter which
treats the most essential language features in a fairly informal manner. This is also the
purpose of the present chapter. We first show how some of the “standard features” of
the Q programming language can be employed for using the Q interpreter effectively as a
sophisticated kind of “desktop calculator”. The remainder of this section then adresses the
question of how you can extend the Q environment by providing your own definitions in
Q scripts, and describes the evaluation process and the treatment of runtime errors in the
interpreter.

2.1 Using the Interpreter

To begin with, let us show how the Q interpreter is invoked to evaluate some expressions
with the built-in functions provided by the Q language. Having installed the Q programming
system, you can simply invoke the interpreter from your shell by typing q. The interpreter
will then start up, display its sign-on, and leaves you at its prompt:

==>

This indicates that the interpreter is waiting for you to type an expression. Let’s start
with a simple one:

==> 23
23

Sure enough, that’s correct. Any integer is a legal value in the Q language, and the
common arithmetic operations work on these values as expected. Q integers are “bignums”,
i.e., their size is only limited by available memory:

==> 16753418726345 * 991726534256718265234
16614809890429729930396098173389730

“Real” numbers (more exactly, their approximation using 64 bit double precision floating
point numbers) are provided as well. Let’s try these:

==> sqrt (16.3805*5)/.05
181.0

The sqrt identifier denotes a built-in function which computes the square root of its
argument. (A summary of the built-in functions can be found in Chapter 10 [Built-In
Functions], page 77.)

What happens if you mistype an expression? Let’s see:

==> sqrt (16.3805*5)/,05
! Syntax error
>>> sqrt (16.3805*5)/,05

^

As you can see, the interpreter not only lets you know that you typed something wrong,
but also indicates the position of the error.
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At this point, it is time to try out the interpreter’s “command history”. Using the up
and down arrow keys, you can cycle through the expressions you have typed before, edit
them, and resubmit a line by hitting the carriage return key. Also note that what you
typed is stored in a “history file” when you exit the interpreter, which is reloaded next time
the interpreter is invoked. A number of other useful keyboard commands are provided, see
section “Command Line Editing” in The GNU Readline Library . In particular, you can
have the command line editor “complete” function symbols with the <TAB> key. E.g., if you
type in sq and press the <TAB> key, you will get the sqrt function.

The interpreter also maintains a global variable environment, in which you can store
arbitrary expression values. This provides a convenient means to define abbreviations for
frequently-used expressions and for storing intermediate results. For instance:

==> def X = 16.3805*5

==> X
81.9025

==> def f = sqrt

==> f X/.05
181.0

In fact, the above definitions and expressions can also be entered on a single line, using
commas to separate different definitions in a def command, and semicolons to separate
different expressions and def statements:

==> def X = 16.3805*5, f = sqrt; X; f X/.05
81.9025
181.0

Another useful feature is the built-in “anonymous” variable ‘_’, which is always set to
the value of the most recent expression value printed by the interpreter:

==> _
181.0

==> 2*_
362.0

Sometimes you would also like the interpreter to “forget” about a definition. This can
be done by means of an undef statement:

==> undef X; X
X

Besides def and undef, the interpreter provides a number of other special commands.
The most important command for beginners certainly is the help command, which displays
the online manual using the GNU info reader. You can also run this command with a
keyword to be searched in the info file. For instance, to find out about all special commands
provided by the interpreter, type the following:

==> help commands
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(Type q when you are done reading the info file.)

Other useful commands are who which prints a list of the user-defined variables, and
whos which describes the attributes of a symbol:

==> who
f

==> whos f sqrt

f user-defined variable symbol
= sqrt

sqrt builtin function symbol
sqrt X1

You can save user-defined variables and reload them using the save and load commands:

==> save
saving .q_vars

==> def f = 0; f
0

==> load
loading .q_vars

==> f
sqrt

Some statistics about the most recent expression evaluation can be printed with the
stats command:

==> sqrt (16.3805*5)/.05
181.0

==> stats
0 secs, 3 reductions, 3 cells

As indicated, the stats command displays the (cpu) time needed to complete an eval-
uation, the number of “reductions” (a.k.a. basic evaluation steps) performed by the inter-
preter, and the number of expression “cells” needed during the course of the computation.
This information is useful for profiling purposes.

Other commands allow you to edit and run a script directly from the interpreter, and to
inspect and set various internal parameters of the interpreter; see Section B.2 [Command
Language], page 181.

Let us now return to expression evaluation. The Q interpreter can carry out compu-
tations on non-numeric data as well. For instance, strings and lists may be concatenated
using the ++ operator:

==> "abc"++"xyz"
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"abcxyz"

==> [a,b,c]++[x,y,z]
[a,b,c,x,y,z]

To determine the length of a string or list, we can use the unary # operator, and zero-
based indexing is implemented with the binary subscript operator !:

==> #"abc"; "abc"!1
3
"b"
==> #[a,b,c]; [a,b,c]!1
3
b

Analogous operations are also provided for “tuples”, which are Q’s equivalent of “vec-
tors” or “arrays” in other languages, and are written as expression sequences enclosed in
parentheses, like (a,b,c).

Some remarks about the notion of function applications in the Q language are in order.
As indicated in the examples above, function application is simply denoted by juxtaposi-
tion. Parentheses are only required for setting off nested applications and to change the
precedence of operators.

Another important point is that the Q language, like most contemporary functional
languages, allows you to turn any built-in operator into a prefix function by enclosing it in
parentheses. Thus (+) denotes the function which adds its two arguments, and X+1 can also
be written as (+) X 1; in fact, the former expression is nothing but “syntactic sugar” for
the latter, see Section 6.4 [Built-In Operators], page 33. Furthermore, function application
is in fact an explicit (binary and left-associative) operation, which makes it possible to
write down “curried” expressions like (*) 2 which denotes the function which doubles its
argument. Q also supports the usual operator section notation which allows you to specify
a binary operator with only either its left or right operand. For instance, (1/) denotes the
reciprocal, (+1) the “increment by 1”, and (2*) (again) the doubling function.

It is quite instructive to keep on playing a bit like this, to get a feeling of what the
Q interpreter can do. You might also wish to consult Chapter 10 [Built-In Functions],
page 77, which discusses the built-in functions, and Appendix B [Using Q], page 175, which
shows how the interpreter is invoked and what additional capabilities it offers. To exit the
interpreter when you are finished, invoke the built-in quit function:

==> quit

This function does not return a value, but immediately returns you to the operating
system’s command shell.

2.2 Using the Standard Library

The standard library is a comprehensive collection of useful functions and data structures
which are not provided as built-ins, but are implemented by scripts which are mostly written
in Q itself. Most of these scripts are included in the “prelude script” prelude.q, which is
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always loaded by the interpreter, so that the standard library functions are always available.
See Chapter 11 [The Standard Library], page 93, for an overview of these operations. You
can check which standard library scripts a.k.a. “modules” are actually loaded with the
interpreter’s modules command. With the standard prelude loaded, this command shows
the following:

==> modules
array assert bag clib*
comp complex cond dict
error hdict heap lambda
list math prelude set
sort stddecl stdlib stdtypes
stream string typec

As you can see, there are quite a few modules already loaded, and you can use the
functions provided by these modules just like any of the built-in operations. The standard
library provides a lot of additional functions operating on numbers, strings and lists. For
instance, you can take the sum of a list of (integer or floating point) numbers simply as
follows:

==> sum [1,2,3,4,5]
15

In fact, the library provides a rather general operation, foldl, which iterates a binary
function over a list, starting from a given initial value. Using the foldl function, the above
example can also be written as follows:

==> foldl (+) 0 [1,2,3,4,5]
15

(There also is a foldr function which works analogously, but combines list members
from right to left rather than from left to right.)

To generate a list of numbers, we can use the nums function:

==> nums 1 5
[1,2,3,4,5]

The nums function is just a special instance of the general-purpose list-generating func-
tion while. For instance, we can generate the list of all powers of 2 in the range [1,1000] as
follows:

==> while (<=1000) (2*) 1
[1,2,4,8,16,32,64,128,256,512]

(Recall from the previous section that (2*) is the doubling function. And (<=1000) is a
predicate which checks its argument to be less than or equal to 1000.)

If we want to generate a list of a given size, we can use iter instead. So, for instance,
we might compute the value of a finite geometric series as follows:

==> sum (iter 4 (/3) 1)
1.48148148148148
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The map function allows you to apply a function to every member of a list. For instance,
the following expression doubles each value in the list [1,2,3,4,5]:

==> map (2*) (nums 1 5)
[2,4,6,8,10]

Lists can also be filtered with a given predicate:

==> filter (>=3) (nums 1 5)
[3,4,5]

The scan operation allows us to compute all the sums of initial segments of a list (or
accumulate any other binary operation over a list):

==> scan (+) 0 (nums 1 5)
[0,1,3,6,10,15]

Initial and remaining parts of a list can be computed with take, drop and takewhile,
dropwhile:

==> take 3 (nums 1 5); drop 3 (nums 1 5)
[1,2,3]
[4,5]

==> takewhile (<=3) (nums 1 5); dropwhile (<=3) (nums 1 5)
[1,2,3]
[4,5]

To transpose a list of lists (i.e., map a list of lists to a list of lists of corresponding
elements), you can use the transpose function:

==> transpose [[1,2,3,4,5],[A,B,C,D,E]]
[[1,A],[2,B],[3,C],[4,D],[5,E]]

All the operations described above – and many others – are provided by the stdlib.q
script. It is instructive to take a look at this script and see how the operations are defined.

In addition, the list.q script provides yet another list generating function listof for
writing down so-called “list comprehensions”, which allow you to describe list values in
much the same way as sets are commonly specified in mathematics. For instance, you can
generate a list of pairs (I,J) with 1<=J<I<=5 simply as follows:

==> listof (I,J) (I in nums 1 5, J in nums 1 (I-1))
[(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4)]

We also have a random number generator, which is implemented by the built-in random
function. Here is how we can generate a list of 5 pseudo random 32 bit integers:

==> listof random (I in nums 1 5)
[1960913167,1769592841,3443410988,2545648850,536988551]

To get random floating point values in the range [0,1] instead, we simply divide the
results of random by 0xffffffff:

==> listof (random/0xffffffff) (I in nums 1 5)
[0.18231268883271,0.240211885944058,0.594435058439717,0.516151836029289,
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0.526110585901446]

Lists can be sorted using quicksort (this one comes from sort.q):

==> qsort (<) _
[0.18231268883271,0.240211885944058,0.516151836029289,0.526110585901446,
0.594435058439717]

The standard library also provides “lazy” lists, a.k.a. “streams”, which are defined in
streams.q. Streams are like lists but can actually be infinite because their elements are
only produced “on demand”. Most list operations carry over to streams accordingly. For
instance, if we want to create a geometric series like the one generated with iter above, but
we do not know how many elements will be needed in advance, we can employ the stream
iteration function iterate:

==> iterate (/3) 1
bin 1 (iterate (/3) ((/3) 1))

The bin stream “constructor” works in the same way as the [|] list constructor, but is
“special” in that it does not evaluate its arguments. To get all members of the series we
can apply the scan function:

==> def S = scan (+) 0 _

Now we can extract any number of initial values of the series using the take operation,
and convert the resulting stream to an ordinary list with the list function. For instance,
if we are interested in the first five values of the series, we proceed as follows:

==> list (take 5 S)
[0,1,1.33333333333333,1.44444444444444,1.48148148148148]

Note that the stream S is really infinite; if we want, we can extract any value in the
series:

==> S!9999
1.5

Let’s see how many iterations are actually required to reach the limit 1.5 with an error
of at most 1e-15:

==> #takewhile (>1e-15) (map (1.5-) S)
32

This means that the sum of the first 31 series terms is needed to get an accuracy of 15
digits (which is the best that we can hope for with 64 bit floating point values). We can
readily verify this using iter:

==> sum (iter 31 (/3) 1)
1.5

Another frequently used operation is lambda (contained in lambda.q) which allows you
to create new function objects “on the fly”. For instance, another way to represent the
doubling function is:

lambda X (2*X)
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(Note that this is not quite the same as the prefix function (2*). Lambdas actually
evaluate to so-called “combinator” expressions which represent the denoted function objects,
see Section 11.7 [Lambda Calculus], page 103. For instance, the value of lambda X (lambda
Y (X*Y)) is the combinator expression _B _A (*).)

The def statement can be used to assign lambdas to variables in the interpreter. For
instance:

==> def double = lambda X (2*X); double 7
14

The lambda variable can also be an arbitrary pattern to be matched against the actual
parameter, e.g.:

==> lambda (X,Y) ((1-X)*Y) (.9,.5)
0.05

The lambda function is also used to implement the variable bindings in the listof
operation, see above. Thus variable patterns can also be used inside list comprehensions:

==> listof (2*I+J) ((I,J) in [(1,2),(3,4),(5,6)])
[4,10,16]

Besides string and list processing functions and general utility functions of the kind
sketched out above, the standard library also includes a collection of efficient “container”
data structures which are useful in many applications. For instance, so-called hashed dic-
tionaries (also known as “hashes” or “associative arrays”) are implemented by the hdict.q
script. The following expressions show how to create a dictionary object from a list, and
how to access this dictionary using the index (!), keys and vals operations:

==> def D = hdict [(foo,99),(bar,-1),(gnu,foo)]; D!gnu
foo

==> keys D
[foo,bar,gnu]

==> vals D
[99,-1,foo]

This completes our little tour through the standard library. To find out more, please
refer to Chapter 11 [The Standard Library], page 93, or take a look at the scripts themselves.

2.3 Writing a Script

Now that we have taken the first big hurdle and are confident that we can actually get
the Q interpreter to evaluate us some expressions, let us try to define a new function for
use in the interpreter. That is, we are going to write our first own Q “program” or “script”.

In the Q language, new functions are defined by the means of “equations”, in a way
similar to function definitions in mathematics. Having exited the Q interpreter, invoke
your favourite text editor and enter the following simple script which implements the well-
known factorial function:
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fac N = N*fac(N-1) if N>0;
= 1 otherwise;

Save the script in the file fac.q and then restart the interpreter as follows (here and in
the following ‘$’ denotes the command shell prompt):

$ q fac.q

You can also edit the script from within the interpreter (using vi or the editor named
by the EDITOR environment variable) and then restart the interpreter with the new script,
as follows:

==> edit fac.q

==> run fac.q

In any case, now the interpreter “knows” about the definition of fac and we can use it
like any of the built-in operations:

==> fac 10
3628800

For instance, what is the number of 30-element subsets of a 100-element set?

==> fac 100 div (fac 30*fac 70)
29372339821610944823963760

As another example, let us write down Newton’s algorithm for computing roots of a
function. Type in the following script and save it to the file newton.q:

newton DX DY F = until (satis DY F) (improve DX F);
satis DY F X = abs (F X) < DY;
improve DX F X = X - F X / derive DX F X;
derive DX F X = (F (X+DX) - F X) / DX;

Restart the interpreter with the newton.q script and try the following. Note that the
target function here is lambda Y (Y^3-X) (see the description of the lambda function in the
preceding section) which becomes zero when Y equals the cube root of X.

==> def cubrt = lambda X (newton eps eps (lambda Y (Y^3-X)) X)

==> def eps = .0001

==> cubrt 8
2.00000000344216

Well, this is not that precise, but we can do better:

==> def eps = 1e-12

==> cubrt 8
2.0
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2.4 Definitions

As mentioned in the previous section, in the Q language function definitions take the
form of equations which specify how a given expression pattern, the left-hand side of the
equation, is transformed into a new expression, the right-hand side of the equation. The left-
hand side may introduce “variables” (denoted by capitalized identifiers, as in Prolog) which
play the role of formal parameters in conventional programming languages. For instance,
the following equation defines a function sqr which squares its (numeric) argument:

sqr X = X*X;

An equation may also include a condition part, as in the definition of the faculty function
from the previous section:

fac N = N*fac(N-1) if N>0;
= 1 otherwise;

As indicated above, several equations for the same left-hand side can be factored to the
left, omitting repetition of the left-hand side. Furthermore, the otherwise keyword may
be used to denote the “default” alternative.

The left-hand side of an equation may actually be an arbitrary compound expression
pattern to be matched in the expression to be evaluated. For instance, the expressions []
and [X|Xs] denote, respectively, the empty list and a list starting with head element X and
continuing with a list Xs of remaining elements, just as in Prolog. We can employ these
patterns in order to implement our own variation of the sum function which computes the
sum of a list of numbers as follows:

private sum Xs;
sum [] = 0;
sum [X|Xs] = X+sum Xs;

Thus no explicit operations for “extracting” the members from a compound data object
such as a list are required; the components are simply retrieved by “pattern matching”.
We remark that pattern matching works in variable definitions as well. For instance, in the
interpreter you can bind variables to the head element and the remainder of a list using a
single definition as follows:

==> def [X|Xs] = [1,2,3]; X; Xs
1
[2,3]

The private declaration in the sum example above lets the interpreter know that we
introduce a new sum symbol. This is necessary because the standard library already contains
a definition for sum, and we want to work with our own sum function here, rather than the
one provided in the standard library. When the above script is loaded in the interpreter,
sum will refer to our “private” version, but we could still access the standard library function
using the “qualified” symbol stdlib::sum, which explicitly refers to the “namespace” of
the stdlib.q module in which the standard sum function is defined. For more information
about namespaces and qualified identifiers see Chapter 4 [Scripts and Modules], page 23.

As you can see in previous examples, in the Q language declarations are usually optional;
new function and variable symbols are declared implicitly by their use, and by default the
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interpreter distinguishes between function and variable symbols by taking a look at the
initial letter of an identifier. However, as the preceding example shows, there are some
situations in which a symbol has to be declared explicitly. More about that in Chapter 5
[Declarations], page 25.

But let us return to our main concern, equations and pattern matching. Pattern match-
ing also works with function applications which may themselves be used as compound,
tree-like data structures. For instance, the following definition implements an insertion
operation on binary trees, which are represented by the “constructor” symbols nil and
bin:

insert nil Y = bin Y nil nil;
insert (bin X T1 T2) Y = bin Y T1 T2 if X=Y;

= bin X (insert T1 Y) T2 if X>Y;
= bin X T1 (insert T2 Y) if X<Y;

The Q interpreter treats equations as “rewrite rules” which are used to reduce expressions
to “normal forms”. Evaluation normally uses the standard “leftmost-innermost” rule, also
known as “applicative order” or “call by value” evaluation. Using this strategy, expressions
are evaluated from left to right, innermost expressions first; thus the arguments of a function
application (and also the function object itself) are evaluated before the function is applied
to its arguments.

An expression is in normal form if it cannot be evaluated any further by applying match-
ing equations (including some predefined rules which are used to implement the built-in
operations, see Chapter 7 [Equations and Expression Evaluation], page 41). A normal form
expression simply stands for itself, and represents a “value” in the Q language. The built-in
objects of the Q language (such as numbers, strings and lists) are always in normal form,
but also any other symbol or function application which does not match a built-in or user-
defined equation. This means that Q is essentially an “exception-free” language. That is,
“error conditions” such as “division by zero” or a “wrong argument type” do not raise any
exceptions by default, but simply cause the offending expression to be returned “as is”. For
instance:

==> 23/0
23/0

You may be disconcerted by the fact that 23/0 actually denotes a legal value in the
Q language. However, this is one of Q’s key features as a term rewriting programming
language, and it adds a great amount of flexibility to the language. Most importantly, it
allows expressions, even expressions involving variables, to be evaluated in a symbolic fash-
ion. For instance, you might add rules for algebraic identities to your script and have the
interpreter simplify expressions according to these rules (just think of symbolic differentia-
tion and similar applications). On the other hand, the Q language also allows you to refine
the definition of any built-in operation and thus it is a simple matter to add an “error rule”
like the following to your script:

X/0 = error "Division by zero!";

(The error function is defined in the standard library script error.q, see Section 11.14
[Diagnostics and Error Messages], page 117.) In order to implement more elaborate error
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handling, you can also use Q’s built-in throw and catch functions to raise and respond
to exceptions on certain error conditions. This is discussed in Section 10.6 [Exception
Handling], page 86. For instance, the following rule will raise an exception on division by
zero, instead of terminating the evaluation with an error message:

X/0 = throw "Division by zero!";

2.5 Runtime Errors

There are a few error conditions which may cause the Q interpreter to abort the evalua-
tion with a runtime error message. A runtime error arises when the interpreter runs out of
memory or stack space, when the user aborts an evaluation with the interrupt key (usually
Ctl-C), and when the condition part of an equation does not evaluate to a truth value
(true or false). (All these error conditions can also be handled by the executing script,
see Section 10.6 [Exception Handling], page 86.)

You can use the break on command to tell the interpreter that it should fire up the
debugger when one of the latter two conditions arises. After Ctl-C, you can then resume
evaluation in the debugger, see Appendix D [Debugging], page 199. This is not possible
if the interpreter stumbles across an invalid condition part; in this case the debugger is
invoked merely to report the equation which caused the error, and to inspect the call chain
of the offending rule. Hitting the carriage return key will return you to the interpreter’s
evaluation loop.

For instance, reload the fac.q script from Section 2.3 [Writing a Script], page 12:

fac N = N*fac(N-1) if N>0;
= 1 otherwise;

Now enable the debugger with the break command and type some “garbage” like fac fac:

==> break on; fac fac
! Error in conditional

0> fac.q, line 1: fac fac ==> fac*fac (fac-1) if fac>0
(type ? for help)
:

What happened? Well, the debugger informs us that the error occurred when the inter-
preter tried to apply the first equation,

fac N = N*fac(N-1) if N>0;

to the expression fac fac. In fact this is no big surprise since we cannot expect the in-
terpreter to know how to compare a symbol, fac, with a number, 0, which it tried when
evaluating the condition part of the above equation. So let us return to the interpreter’s
prompt by hitting the carriage return key:

: <CR>

==>
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The interpreter now waits for us to type the next expression. (For a summary of debugger
commands please refer to Appendix D [Debugging], page 199. You can also type ? or help
while in the debugger to obtain a list of available commands.)
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3 Lexical Matters

The vocabulary of the Q programming language consists of notations for identifiers,
integers, floating point numbers, character strings, comments, a few reserved words which
may not be used as identifiers, and some special symbols which are used as operators and
delimiters. Whitespace (blanks, tabs, newlines, form feeds) serves as a delimiter between
adjacent symbols, but is otherwise ignored. Comments are treated like whitespace:

/* This is a comment ... */

Both Prolog- and BCPL- resp. C++-style line-oriented comments are supported:

% this is a comment ...
// C++-style comment ...

Furthermore, lines beginning with the #! symbol denote a special type of comment which
may be processed by the operating system’s command shell and the Q programming tools.
On UNIX systems, this (odd) feature allows you to execute Q scripts directly from the shell
(by specifying the q program as a command language processor) and to include compiler
and interpreter command line options in a script (see Section B.4 [Running Scripts from
the Shell], page 188).

Identifiers are denoted by the usual sequences of letters (including ‘_’) and digits, be-
ginning with a letter. Upper- and lowercase is distinct. In the Q language, identifiers are
used to denote both function and variable symbols. As in Prolog, a capitalized identifier
(such as X, Xmax and XMAX) indicates a variable symbol; all other identifiers denote function
symbols (unless they are declared as “free” variables, see below). In difference to Prolog,
the underscore ‘_’ counts as a lowercase letter, hence _MAX is a function symbol, not a vari-
able. However, as an exception to the general rule, the identifier ‘_’ does denote a variable
symbol, the so-called anonymous variable.

Variables actually come in two flavours: bound and free variables, i.e., variables which
also occur on the left-hand side of an equation, and variables which only occur on the right-
hand side and/or in the condition part of an equation. Identifiers may also be declared as
free variables; see Chapter 5 [Declarations], page 25. In this case, they may also start with
a lowercase letter. Furthermore, all new symbols created interactively in the interpreter are
treated as free variable symbols.

Both function and free variable identifiers may also be qualified with a module identifier
prefix (cf. Chapter 4 [Scripts and Modules], page 23), to specifically denote a symbol of the
given module. Formally, the syntax of identifiers is described by the following grammatical
rules:

identifier : unqualified-identifier
| qualified-identifier

qualified-identifier : unqualified-identifier ’::’
unqualified-identifier

unqualified-identifier : variable-identifier
| function-identifier

variable-identifier : uppercase-letter {letter|digit}
| ’_’



20 The Q Programming Language

function-identifier : lowercase-letter {letter|digit}
letter : uppercase-letter|lowercase-letter
uppercase-letter : ’A’|...|’Z’
lowercase-letter : ’a’|...|’z’|’_’
digit : ’0’|...|’9’

(Please refer to Appendix A [Q Language Grammar], page 171, for a description of the
BNF grammar notation used throughout this document.)

The reserved words of the Q language are:

as and const def div else extern
if import in include mod not or
otherwise private public special then type undef
var where

Signed decimal numeric constants are denoted by sequences of decimal digits and may
contain a decimal point and/or a scaling factor. Integers can also be denoted in octal or
hexadecimal, using the same syntax as in C:

number : [’-’] unsigned-number
unsigned-number : ’0’ octdigitseq

| ’0x’ hexdigitseq
| ’0X’ hexdigitseq
| digitseq [’.’ [digitseq]] [scalefact]
| [digitseq] ’.’ digitseq [scalefact]

digitseq : digit {digit}
octdigitseq : octdigit {octdigit}
hexdigitseq : hexdigit {hexdigit}
scalefact : ’E’ [’-’] digitseq

| ’e’ [’-’] digitseq
digit : ’0’|...|’9’
octdigit : ’0’|...|’7’
hexdigit : ’0’|...|’9’|’a’|...|’f’|’A’|...|’F’

Simple digit sequences without decimal point and scaling factor are treated as integers;
if the sequence starts with ‘0’ or ‘0x’/‘0X’ then it denotes an integer in octal or hexadecimal
base, respectively. Other numbers denote (decimal) floating point values. If a decimal point
is present, it must be preceded or followed by at least one digit. Both the scaling factor and
the number itself may be prefixed with a minus sign. (Syntactically, the minus sign in front
of a number is interpreted as unary minus, cf. Chapter 6 [Expressions], page 29. However,
if unary minus occurs in front of a number, it is interpreted as a part of the number and
is taken to denote a negative value. See the remarks concerning unary minus in Chapter 6
[Expressions], page 29.) Some examples:

0 -187326 0.0 -.05 3.1415e3 -1E-10 0177 0xaf -0XFFFF

String constants are written as character sequences enclosed in double quotes:

string : ’"’ {char} ’"’
char : any character but newline and "
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To include newlines, double quotes and non-printable characters in a string, the following
escape sequences may be used:

\n newline
\r carriage return
\t tab
\b backspace
\f form feed
\" double quote
\\ backslash

Furthermore, a character may also be denoted in the form \N, where N is the character
number in decimal, hexadecimal or octal (using the same syntax as for unsigned integer
values).

A string may be continued across lines by putting the \ character immediately before
the end of the line, which causes the following newline character to be ignored.

Some examples:

"" empty string
"A" single character string
"\27" escape character (ASCII 27)
"\033" same in octal
"\0x1b" same in hexadecimal
"a string" multiple character string
"a \"quoted\" string" include double quotes
"a line\n" include newline
"a very \ continue across line end
long line\n"

Finally, as already mentioned, some special symbols are used as operators and delimiters:

~ , ; : | || < > = <= >= <> ++ + - * / \ ^ ! # @ ( ) [ ]
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4 Scripts and Modules

The basic compilation unit in the Q language is the script, which is simply a (possibly
empty) sequence of declarations and definitions in a single source file:

script : {declaration|definition}

In order to make a given set of definitions available for use in the interpreter, you can
just collect the relevant declarations, variable definitions and equations in a single script
which you can submit to the interpreter for execution. The interpreter in turn invokes the
compiler to translate the script into a bytecode file which is loaded by the interpreter (see
Appendix B [Using Q], page 175). A script may also be empty, in which case it does not
provide any additional definitions at all.

If you put all definitions into a single script, that’s all there is to it. However, you might
wish to break down a larger script into a collection of smaller units, also called modules,
which can be managed separately and which are linked together by the compiler into a
single bytecode file. In the Q language there is no distinction between the main script and
the other modules, all these are just ordinary script files. To gain access to the function,
variable and type symbols provided by another module, you must use an import or include
declaration (the difference between these two will be pointed out below):

declaration : ’import’ module-spec {’,’ module-spec} ’;’
| ’include’ module-spec {’,’ module-spec} ’;’

module-spec : module-name [’as’ unqualified-identifier]
module-name : unqualified-identifier

| string

For instance, the following declaration imports two modules foo and bar:

import foo, bar;

Note that the Q language allows you to declare symbols either as “public” or “private”,
see Chapter 5 [Declarations], page 25. Outside a module, only the public symbols are acces-
sible when the module is imported in another module. Moreover, import is not “transitive”,
i.e., importing a module foo does not automatically give you access to the symbols imported
by foo, but only to the public symbols declared in foo itself. In contrast, the include dec-
laration causes all imports and includes of the included module to be “reexported”. For
instance, let us consider the case that module foo includes module bar:

include bar;

Then by importing module foo you also gain access to the public symbols of module bar
(and, recursively, to the modules included by bar, etc.). This provides a means to group
different modules together in one larger module. For instance, the standard prelude script
(cf. Chapter 11 [The Standard Library], page 93) simply includes all the other standard
library modules. (It is also possible to selectively reexport symbols from imported modules,
using a corresponding public symbol declaration, see Chapter 5 [Declarations], page 25.)

In the Q language, each module has its own separate namespace. This means that two
different modules, say foo1 and foo2, may both provide their own public function symbol
named foo. If both foo1 and foo2 are imported in the same script, you can distinguish
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between the two by using a qualified identifier, using the module name as a prefix, e.g.,
foo1::foo or foo2::foo. (Writing simply foo in this case will produce an error message
because the reference is ambiguous.)

Import and include declarations can occur anywhere in a script (and will be active from
this point on up to the end of the script file), but it is common practice to put them near
the beginning. As in most other programming languages, module dependencies must always
be acyclic. If the compiler finds a cyclic chain of import and include declarations, such as
a module importing itself or a module foo importing a module bar which in turn imports
foo again, it produces an error message.

As indicated in the syntax rules, the names of the modules to be imported can either
be specified using an unqualified identifier, or a string denoting a full or relative pathname,
e.g.:

import "/home/ag/q/stuff.q";

In this case, you can also omit the ‘.q’ suffix, it will be supplied automatically when
necessary. Moreover, the module identifier is derived automatically as the basename of the
script filename (i.e., stuff in the above example); therefore, the basename of a script file
should always be a legal Q identifier.

If no absolute path is specified, the interpreter locates script files using its “search path”,
which usually contains the current directory and other system-dependent or user-defined
locations where “library” scripts are kept, see Appendix B [Using Q], page 175, for details.

The ‘as’ keyword can be used to explicitly specify an unambiguous module name. This
is useful, in particular, if the basename of the module is not a valid identifier, and for the
purpose of resolving name clashes. For instance:

import "my/stdlib.q" as mystdlib;

Simply importing "my/stdlib.q" under its own name in this case would produce an
error message, because the name of the module collides with the standard library module
of the same name, and the compiler enforces that all module names are unique.

Talking about the standard library (see Chapter 11 [The Standard Library], page 93), we
remark that the public symbols of these modules are always available because the prelude.q
script, which includes all these modules, is by default always imported in any script file
(except for the prelude itself, and its includes). When looking up an unqualified symbol
in a given script, the compiler first searches for a symbol defined in that script, then for a
symbol in an imported or included module, then for a symbol defined by the prelude and
its includes, and finally for a built-in symbol. You can instruct the compiler to inhibit the
default import of the prelude, by using the --no-prelude option, see Appendix B [Using
Q], page 175. Moreover, you can also override the standard prelude with your own, if it
occurs on the search path before the standard prelude, see Section B.3 [Setting up your
Environment], page 187.

The namespace available in the interpreter is that of the main script. The interpreter
also allows you to dynamically import additional modules in the global scope. Moreoever, in
the interpreter it is possible to gain access to all public and private symbols of the program
(also in modules not directly imported in the main script) using qualified identifiers.
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5 Declarations

The Q language allows you to declare function and (free) variable symbols explicitly,
by means of the syntactic constructs discussed in this chapter. Symbol declarations are
optional; if you introduce a new symbol without declaring it, the compiler declares it for
you. However, you will sometimes wish to ensure that a new symbol is created to over-
ride a symbol of the same name from an imported module, or you want to attach special
attributes to a symbol, and then you have to use an explicit declaration. Syntactically,
symbol declarations take the following form:

declaration : prefix headers ’;’
| [scope] ’type’ unqualified-identifier

[’:’ identifier] [’=’ sections] ’;’
| [scope] ’extern’ ’type’ unqualified-identifier

[’:’ identifier] ’;’
| [scope] ’type’ qualified-identifier

[’as’ unqualified-identifier] ’;’

prefix : scope
| [scope] modifier {modifier}

scope : ’private’|’public’

modifier : ’const’|’special’|’extern’|’var’

headers : header {’,’ header}

header : unqualified-identifier
{[’~’] variable-identifier}

| qualified-identifier
{[’~’] variable-identifier}
’as’ unqualified-identifier ’;’

sections : section {’|’ section}

section : [prefix] headers

For instance, the following are all valid symbol declarations:

public foo;
private extern bar X;
public special lambda X Y;
special ifelse ~P X Y as myifelse;

const red, green, blue;
var FOO, BAR;

public type BinTree = const nil, bin X T1 T2;
private type Day = const sun, mon, tue, wed, thu, fri, sat;
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The keywords private and public specify the scope of a symbol. Public symbols are
accessible outside a script, and can be imported by other modules (see Chapter 4 [Scripts
and Modules], page 23). If the keywords private and public are omitted, the scope
defaults to private.

The special keyword serves to declare special forms, which are described in Chapter 9
[Special Forms], page 69. Function symbols declared with const introduce “constant” or
“constructor” symbols; the compiler enforces that expressions created with such symbols are
not redefined in an equation (cf. Section 7.1 [Equations], page 41). The built-in constants
true, false, [] and () are already predeclared as const. Non-const function symbols
can also be declared as extern, meaning that the corresponding function is actually im-
plemented by a corresponding “external” module, see Appendix C [C Language Interface],
page 191.

The var keyword allows you to declare “free” variable symbols, which can be assigned
a value by means of a variable definition, see Section 7.3 [Free Variables], page 46. If you
use such a declaration, the variable symbol may also start with a lowercase letter (if it has
not already been declared as a function symbol); note that without such a declaration, an
identifier starting with a lowercase letter will implicitly be declared as a function symbol.
Variable symbols can also be declared as const; in this case the variable can only be
assigned to once and always refers to the same value once it has been defined. The built-
in variables INPUT, OUTPUT, ERROR and ARGS are predeclared as const, see Section B.2
[Command Language], page 181.

As indicated, the scope-modifier prefix of a declaration is followed by a comma-separated
list of headers. The first identifier in each header states the symbol to be declared. In
function symbol declarations the function identifier may be followed by a list of variable
identifiers which are used to denote the arguments of the declared function symbol. The
variables are effectively treated as comments; only their number (called the arity of a
function symbol) is recorded to check the consistency of different declarations of the same
symbol, and to specify the number of “special” arguments in a special declaration. In
special declarations variables may also be prefixed with ‘~’ to declare them as “non-
special” arguments; see Chapter 9 [Special Forms], page 69.

The first declaration of an unqualified identifier in a module always introduces a new
symbol in the module’s namespace. By default (if no explicit declaration precedes the
first use of a new, unqualified symbol), the compiler automatically declares it as a private
nullary function or variable symbol, depending on the case of the initial letter of the identifier
(as already mentioned in Chapter 3 [Lexical Matters], page 19, capitalized identifiers are
interpreted as variable symbols, others as function symbols).

The Q language admits multiple declarations of the same symbol, and the compiler will
verify the consistency of all declarations of a given symbol. That is, if a symbol is declared
with different attributes (like var, const or special) or different number of arguments, or
if non-special arguments of a special form are declared differently, then the compiler will
issue an error message.

As indicated by the syntactic rules, it is also possible to redeclare a qualified symbol.
This requires that the target module either is the current module or has already been
imported, and causes the compiler to both cross-check the declaration with the declaration
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in the imported module and redeclare the symbol within the current namespace. Such
a redeclaration serves several different purposes. First, it allows you to ensure that an
imported symbol was actually declared with the given attributes. Second, it lets you resolve
name clashes by redeclaring the symbol in the current scope where it overrides imports of
other modules; if you want, you can also import the symbol under a new name using an
‘as’ clause. In these two cases the symbol will normally be redeclared as a private symbol.
Third, by redeclaring a symbol as public, you cause the symbol to be reexported by the
current module. This provides an alternative to the include declaration, and makes it
possible to reexport only selected symbols imported from other modules (possibly under a
new name, when using an ‘as’ clause). Examples:

import gnats;
private gnats::foo X Y; // cross-check declaration of gnats::foo
public gnats::foo X Y as bar; // reexport gnats::foo as bar

There is yet another usage of an imported symbol redeclaration, namely the extern
redeclaration. This is only possible with function symbols and if the redeclared symbol is
not already declared extern by another module. It instructs the compiler that this module
provides an external definition of the symbol which will override equational definitions in
other modules, see Appendix C [C Language Interface], page 191, for details.

A type declaration introduces a type identifier, an optional supertype for the type, and
an optional list of “constructor” symbols for the type. It associates the function symbols
in the list with the given type. The symbol list is a |-delimited list of individual sections.
Each section takes the form of an ordinary symbol declaration, consisting of scope/modifier
prefix and a comma-delimited list of headers. The prefix is optional; by default, a symbol
has the same scope as the type it belongs to. To change scope and attributes of a symbol
on the list, use an appropriate scope/modifier prefix. For instance, you can declare a public
BinTree type with private constructors nil and bin as follows:

public type BinTree = private const nil, bin X T1 T2;

Each constructor symbol may only be declared once; otherwise the compiler will issue
an error message. Hence it is enforced that a constructor symbol only belongs to a single
type, and that the number of arguments of that symbol is determined uniquely.

Type identifiers may begin with either an upper- or lowercase letter (the convention,
however, is to use capitalized identifiers). There may only be a single declaration for each
type. Type identifiers form a separate symbol category and therefore cannot collide with
function or variable symbols. Types are used on the left-hand side of equations to restrict
the set of expressions which can be matched by a variable; see Section 7.5 [Type Guards],
page 49, for details. The Q language has nine predefined type symbols which distinguish
the corresponding types of objects built into the language: Int, Float, Num (which is the
supertype for both Int and Float), String, Char (which is the subtype of String denoting
the single-character strings), File, List, Tuple and Bool. (Besides this, there are also two
built-in types for exceptions, see Section 10.6 [Exception Handling], page 86.)

Like function symbols, types imported from other modules can also be redeclared (pos-
sibly under a new name), and reexported, e.g.:

public type array::Array as MyArray;
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In this case, no constructor symbols or supertype are specified. Types can also be
declared as extern, to indicate that they are realized in a corresponding C module, as
described in Appendix C [C Language Interface], page 191. In this case, too, there are no
constructor symbols; however, a supertype may be specified. For instance:

extern type Bar;

In difference to function symbols, an existing type imported from another module cannot
be redeclared as extern. Therefore an external definition must always be given by the
module which originally declares the type.
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6 Expressions

The notion of expressions is an intrinsic part of most, if not all, programming languages.
However, in most programming languages expressions are merely treated as descriptions of
computations to be performed in order to obtain the value of an expression, which usually
belongs to some basic type provided by the language. In contrast, in the Q language
expressions are objects in their own right which, as we shall see, are manipulated according
to computational rules specified by the programmer.

As usual, expressions are built from certain kinds of basic objects. In the Q language,
these are integers, floating point numbers, strings, function and variable symbols. These
objects are combined into larger, compound expressions by means of applications, lists and
tuples. For convenience, the Q language also provides prefix and infix operator symbols for
the most common operations; these are actually treated as “syntactic sugar” for applica-
tions. The syntax of all these entities is described by the following grammatical rules:

expression : identifier
| variable-identifier ’:’ identifier
| number
| string
| expression expression
| unary-op expression
| expression binary-op expression
| ’(’ [element-list] ’)’
| ’[’ [element-list] ’]’
| ’(’ op ’)’
| ’(’ expression binary-op ’)’
| ’(’ binary-op expression ’)’

element-list : expression-list [’|’ expression]

expression-list : expression {’,’ expression}

op : unary-op|binary-op

unary-op : ’-’|’#’|’not’|’’’|’‘’|’~’

binary-op : ’^’|’!’|’++’|’+’|’-’|’\’|’*’|’/’|’div’|’mod’
| ’and’|’or’|’and’ ’then’|’or’ ’else’
|’<’|’>’|’=’|’<=’|’>=’|’<>’|’in’|’||’

6.1 Constants and Variables

The nonterminals identifier, number and string occuring in the syntax rules above
refer to the lexical entities introduced in Chapter 3 [Lexical Matters], page 19. Note that
the Q language actually distinguishes two different types of identifiers (function and vari-
able identifiers) and two different types of numeric quantities (integers and floating point
numbers). Integers are implemented as “bignums” using the GNU multiprecision package
(GMP); thus the size of an integer value is only limited by available memory. Floating point
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values are implemented using 64 bit (i.e., double precision) floating point numbers; on most
machines, these should provide nonzero absolute values ranging from 1.7E-308 to 1.7E308
and a precision of 15 decimal digits.

String constants are character sequences internally represented as character arrays per-
mitting constant-time access to the individual characters of a string. There is no a priori
length restriction for string constants. In the current implementation, the null character \0
is reserved as a string terminator and must not be used as an ordinary string character.

Furthermore, the Q language provides four other built-in constants which denote the
truth values (true and false), and the empty list and tuple ([] and (), to be discussed in
Section 6.3 [Lists and Tuples], page 32).

A variable symbol can be “bound” or “free”, depending on the context in which it
occurs. We say that a variable is bound in an equation if it occurs on the left-hand side
of the equation. Otherwise, the variable is a free variable. In this case, the variable may
denote a value (introduced with def), or simply stands for itself. In any case, a variable is
a legal atomic expression which may stand wherever a constant is allowed.

On the left-hand side of equations, it is possible to declare that a variable is of a given
type by using the notation:

variable:type

This requires that you have previously declared type as a type identifier, see Chapter 5
[Declarations], page 25. When a type identifier is specified with a variable, the variable will
only match values belonging to the given type, cf. Section 7.5 [Type Guards], page 49.

6.2 Applications

Application is probably the most important single construct in the Q language. It allows
you to apply one object (the “function”) to another one (the “argument”). This construct
is used to denote “function calls” such as sqrt 2 as well as “constructor terms” such as
bin X T1 T2 which encode tree-like data structures. Also, as we will see in Section 6.4
[Built-In Operators], page 33, the built-in operators +, -, etc. are merely syntactic sugar
for applications. Indeed, applications could also be used to represent sequences of objects.
However, as this latter kind of objects tends to be used so frequently in Q scripts, the
Q language provides special support for sequences by means of the built-in list and tuple
constructs discussed in Section 6.3 [Lists and Tuples], page 32.

As in other contemporary functional languages, application is a binary operation written
simply as juxtaposition: X Y denotes the application of X to Y, both of which may be
arbitrary expressions themselves. Application associates to the left; the construct X Y1
... Yn is equivalent to (...((X Y1) Y2) ...) Yn, and denotes the application of X to n
arguments Y1, . . . , Yn. This style of writing function applications is commonly referred to
as currying, after the American logician H.B. Curry. We will have to say more about this
shortly.

Here are some valid examples of applications:

sqrt 2
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sqrt (Y+1)
foo X (bar (Y-1)) Z

Note that since application is left-associative, nested applications in arguments must be
set off with parentheses. For instance, foo (bar X) applies foo to bar X, whereas foo bar
X applies foo to two arguments bar and X.

Since currying is so ubiquitous in functional programming, you should be well familiar
with it, so let us briefly explain what it is, and what it is good for.

Functions of multiple arguments can generally be defined in two different ways:

• As a function taking a single, structured argument (usually a tuple). This is the tra-
ditional, “uncurried” method one commonly encounters in mathematics. For instance,
we might define the function max, which takes the maximum of two values, as follows:

max (X,Y) = X if X>Y;
= Y otherwise;

• Recursively, as a function which, when given the first argument, yields another function
of the remaining arguments. Such functions are called curried. For instance, here is a
curried definition for the max function:

max X Y = X if X>Y;
= Y otherwise;

Here max X Y is to be read as (max X) Y, meaning that by applying max to the first
argument X, we obtain another function max X, which, when applied to the second
argument Y, yields the maximum of X and Y.

The Q language supports both kinds of notations. Choosing between the two is more
than just a matter of taste. Besides saving parentheses, curried functions have the chief
advantage that they allow us to make use of initial “parts” of a multi-argument function.
For instance, given the curried definition of max from above, max 0 can be used to denote the
function computing the “nonnegative part” of its argument (which is the argument itself
if it is nonnegative, and zero otherwise). This does not work with the uncurried definition
since that definition requires us to specify both arguments of max in one chunk; instead, we
would have to start defining the derived function from scratch.

Uncurried definitions also have their merits. In particular, they allow us to define variadic
functions, i.e., functions which can handle a varying number of arguments. For instance,
the following definition enables us to apply the max function to both pairs and triples:

max (X,Y) = X if X>=Y;
= Y otherwise;

max (X,Y,Z) = max (X,max (Y,Z))

In fact, in the Q language it is possible to define generic functions which apply to any
number of arguments specified as a tuple. For instance, the following version of max handles
tuples of any size at least 2:

max (X,Y) = X if X>=Y;
= Y otherwise;

max (X,Y|Zs) = max (X,max (Y|Zs));
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(In the above example, the notation (...|Zs) is used to denote a tuple whose “remaining
elements” form the tuple Zs. This is explained in the following section.)

6.3 Lists and Tuples

Besides strings, the Q language provides two closely related general constructs for rep-
resenting sequences of objects: lists and tuples.

The constant [] denotes the empty list. In general, a list consisting of elements X1,
X2, . . . , Xn is denoted [X1,X2,...,Xn]. For instance, [a,b,c] consists of three elements
(symbols) a, b and c. It is possible to have nested lists, as in [a,[b,c]] which consists of
two elements, the symbol a and the list [b,c].

As in Prolog, lists are represented in a right-recursive fashion using a binary constructor
[|] which takes as its arguments the head element of the list and the list of the remaining
elements. Thus, [a,b,c] is simply a convenient shorthand notation for [a|[b|[c|[]]]].
You can also mix both styles of notation; for instance, [a,b|[c,d]] is another way to
represent the 4-element list [a,b,c,d].

Note that [a|[b,c]] is different from [a,[b,c]]: the former denotes a three-element
list, while the latter is a two-element list whose second member happens to be a list it-
self. Also note that the [|] constructor can in fact be applied to any pair of values (the
second value does not have to be a list); e.g., [a|b] is a perfectly well-formed expression (al-
though the built-in length, indexing and concatenation operations described in Section 6.4.5
[String/List/Tuple Operators], page 38, will fail on such values).

Tuples work in much the same fashion as lists. The constant () denotes the empty
tuple, and a tuple consisting of elements X1, X2, . . . , Xn is written as (X1,X2,...,Xn),
which is equivalent to (X1|(X2|...|(Xn|()))), where the notation (X|Xs) denotes a tuple
consisting of a first element X and the tuple Xs of the remaining elements.

The Q language also has the notion of a 1-tuple (X)=(X|()). It is important to note
that in Q a 1-tuple is really different from its single member. Otherwise, there could be no
nested 1-tuples – in fact, due to the right-recursive nature of tuples in Q, there would be
no nested tuples at the end of a tuple at all. Therefore Q distinguishes between 1-tuples
and their members, and if you want to define a function operating on both 1-tuples and
ordinary expressions, you will have to provide equations for both.

Unfortunately, since parentheses are used for two different purposes, namely for expres-
sion grouping and for tuples, 1-tuples also give rise to an ugly syntactic ambiguity: should
an expression of the form (X) denote a 1-tuple or a simple parenthesized expression? For
notational convenience, Q adopts the following convention: any “primary” expression (i.e.,
anything which binds stronger than an application) can be turned into a 1-tuple simply
by enclosing it in parentheses. So, for instance, (99), ((-99)), (’X), (foo), ((foo (bar
X))) all denote 1-tuples. Note the extra level of parentheses around compound expres-
sions required to distinguish 1-tuples from ordinary parenthesized expressions. (This also
applies to negative numbers like -99, which syntactically are applications of unary minus,
i.e., a compound expression.) If the above sounds confusing to you, here is a simple rule
of thumb: an extra level of parentheses is required whenever the target expression must be
parenthesized when occuring as an argument of a function application. Nested 1-tuples can
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be obtained by adding extra levels of parentheses accordingly. E.g., ((99)) and (((-99)))
both denote a 1-tuple of a 1-tuple of a number.

(NB: A common pitfall with Q’s tuple notation is that one easily gets unwanted 1-
tuples if one has the habit of decorating expressions with superflous parentheses. This
is undoubtedly one of Q’s worst “features”, but the author just could not put up with
alternative notations like curly braces, or the unwieldy (X|()) syntax.)

The big difference between lists and tuples in the Q language is that, while lists are
always represented as recursive data objects using a binary constructor symbol (just the
way that they are written), tuples are actually implemented as “vectors” which are stored
as contiguous sequences in memory. (Of course, this only works for “well-formed” tuples; if
the “remainder” Xs of a tuple (X|Xs) is not a tuple, then this tuple can only be represented
using an explicit application of the tuple constructor.) Therefore tuples normally use up
much less memory than lists of the same size, and they also allow constant-time access to
their members. The size of a tuple can be determined in constant time as well. In contrast,
the same operations, when applied to a list, require time proportional to the size of the
list. On the other hand, lists are more efficient when accessing the remainder part of a
list using pattern matching, and when a new element is prepended to a list using the list
constructor, which can both be done in constant time. Here a tuple needs time proportional
to its size, since the member sequence of the original tuple must be copied when accessing
its remainder part or when constructing a new tuple. (This also implies that converting a
list to a tuple using the tuple constructor actually takes quadratic time and hence is quite
slow for larger sequences; as a remedy, a built-in tuple function is provided which does the
conversion in linear time, see Section 10.4 [Conversion Functions], page 79.)

These tradeoffs should be carefully considered when deciding whether to implement a
given sequence as a list or a tuple. Tuples are usually the best choice for implementing fixed
sequences requiring fast random access to its individual members, whereas lists provide an
efficient means to represent sequences which have to be traversed and manipulated very
frequently.

6.4 Built-In Operators

Besides the forms of expressions already discussed above, the Q language also provides
a collection of infix and prefix operator symbols for common arithmetic, logical, relational
and other operations. A complete list of these symbols is given below, in order of decreasing
precedence:

’ ‘ ~ quotation operators (unary)

^ ! exponentiation and subscript

- # not prefix operators (unary)

* / div mod and and-then
multiplication operators

++ + - or or-else
addition operators
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< > = <= >= <> in
relational operators

|| sequence operator

Most of these symbols have their usual meaning; a closer description follows below. All
binary operators are left-associative, with the exception of ^ and ! which associate to the
right, and the relational operators which are nonassociative. Application takes precedence
over all these operations except the quotation operators; hence sqrt X^3 denotes (sqrt
X)^3 and not sqrt (X^3). The quotation operators have the highest possible precedence,
and hence bind stronger than even applications. Parentheses are used to group expressions
and overwrite default precedences and associativity as usual. But note that extra paren-
theses around a primary expression (identifier, operator symbol, number, string, list, tuple,
quoted or parenthesized expression, i.e., anything which binds stronger than function ap-
plication) turns the expression into a 1-tuple, see Section 6.3 [Lists and Tuples], page 32. C
programmers will also note that the logical operators have the same “wrong” precedence as
in Pascal. Thus you should make sure that you always parenthesize relational expressions
when combining them with logical connectives.

You should also note that unary minus must be parenthesized when appearing in an
argument of a function application. For instance, although foo X -Y is a perfectly well-
formed expression, it denotes (foo X) - Y and not foo X (-Y) as you might have intended
by the spacing which is however ignored by the Q compiler. As already noted in Chapter 3
[Lexical Matters], page 19, unary minus in front of a number is special; it causes values such
as -2 to be interpreted as negative numbers rather than denoting an explicit application of
the unary minus operator (an explicit application of unary minus can be denoted using the
built-in minus symbol; see below). The rules for parenthesizing negative numbers are the
same as those for unary minus; you have to write foo X (-2) instead of foo X -2 (which
denotes (foo X) - 2).

In the Q language, expressions involving operators are merely syntactic sugar for appli-
cations. By enclosing an operator in parentheses, you can turn it into an ordinary prefix
function. For instance, X+Y is exactly the same as (+) X Y, and not X actually denotes the
application (not) X. The built-in operators simply provide a convenient way for applying
these operations to their arguments. Moreover, you can also turn a binary operator into a
unary function by specifying either the left or the right operand. E.g., (1/) denotes the
reciprocal and (*2) the doubling function. Such constructs are commonly called operator
sections. Inside a section, the usual precedence and associativity rules apply. For instance,
the X+3 subterm in (*(X+3)) must be parenthesized because * has a higher precedence
than +, and hence the partial expression (*X+3) is not well-formed.

The - operator plays a somewhat awkward role in the syntax, since it is used to denote
both unary and binary minus. Q adopts the convention that the notation (-) always
denotes binary minus; unary minus may be denoted by the built-in minus function. Thus
the expression minus X applies unary minus to X. Note that this construct always denotes
an explicit application of the unary minus operation. For instance, minus 5 denotes the
application of unary minus to the integer 5, while -5 is a negative integer.

We also remark that the construct (-X) is not an operator section, but a parenthesized
expression involving unary minus. The easiest way to construct an operator section which
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subtracts a given value from its argument is to formulate the function using the addition
operator as in (+(-X)).

6.4.1 Quotation Operators

The ’ (quote), ‘ (backquote) and ~ (tilde) operators are used to deal with so-called
special forms. The quote operator quotes an expression as a literal; it is a constructor
symbol and hence becomes part of the quoted expression. The backquote and tilde operators
are used to “splice” and “force” subterms in an expression. We postpone a discussion of
these operations until Chapter 9 [Special Forms], page 69.

6.4.2 Arithmetic Operators

The operators +, -, *, / denote the sum, the difference, the product and the quotient
of two numeric values, respectively. As already noted, - is also used as unary minus. The
operators div and mod denote integer quotient and modulo, respectively; they only apply
to integers. The ^ operator denotes exponentiation, as defined by X^Y = exp (ln X*Y); it
always returns a floating point value. (If X<0 then X^Y is defined only if Y is an integer.
0^0 is left undefined as well, so if you would like to have that 0^0 = 1 then you must add
corresponding equations yourself. Also note that the complex.q standard library module
extends the built-in definition of the exponentiation operator to handle the case that X<0
with general exponent; see Section 11.12 [Complex Numbers], page 109.)

The argument and corresponding result types of these operations are summarized in
the following table (Int denotes integer, Float floating point, and Num numeric (integer or
floating point) values):

+ - * Int Int → Int
Int Float → Float
Float Int → Float
Float Float → Float

/ ^ Num Num → Float

div mod Int Int → Int

- (unary) Int → Int
Float → Float

6.4.3 Relational Operators

The operators <, >, =, <=, >=, <> are binary predicates meaning “less”, “greater”, “equal”,
“less or equal”, “greater or equal” and “not equal”, respectively. The built-in definition of
these operations only applies to numbers, strings and truth values. All relational operators
return truth values (true, false) as results. Strings are compared lexicographically, on the
basis of the local character encoding. Truth values are ordered by false < true.

If you would like to compare other types of values than the basic objects mentioned above,
normally you will have to provide suitable definitions yourself. For instance, you might
wish to extend the equality operation to other built-in and user-defined data structures
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such as lists, trees, etc., by overloading the = operator accordingly. The following equations
implement an equality predicate on lists (the parentheses on the left-hand side are necessary
to prevent the equality operation to be interpreted as the equal sign separating left-hand
and right-hand side of an equation):

([] = []) = true;
([] = [Y|Ys]) = false;
([X|Xs] = []) = false;
([X|Xs] = [Y|Ys]) = (X=Y) and then (Xs=Ys);

Rules for other comparison operators (<>, <=, etc.) could be added in the same fash-
ion. Actually, the standard library provides corresponding definitions; see Chapter 11 [The
Standard Library], page 93.

A special case arises with types consisting of only nullary constructor symbols declared
with const, so-called enumeration types, see Chapter 8 [Types], page 61. The values of
such a type can always be compared with the relational operators, using the order in which
they are listed in the type declaration. (A special case of this is the order of the built-in
truth values.) For instance, assume that the Day type is declared as follows:

type Day = const sun, mon, tue, wed, thu, fri, sat;

Then the listed constants will be ordered as sun < mon < ... < sat.

Besides the equality predicate, the Q language also provides a notion of “syntactic”
equality which applies to all kinds of expressions; see Section 7.2 [Non-Linear Equations],
page 45, for details.

The Q language provides one other relational operator, the in operator, which does not
have a predefined meaning and hence can be employed by the programmer for his own
purposes. In the standard library, the in operator is used to form list and stream com-
prehensions, see Section 11.8 [List Comprehensions], page 106, and Section 11.9 [Streams],
page 106.

6.4.4 Logical and Bit Operators

The logical operations not, and, or denote logical negation, conjunction and disjunction,
respectively. These operators take truth values as their arguments. They are defined in a
straightforward manner:

not true = false;
not false = true;

true and true = true;
true and false = false;
false and true = false;
false and false = false;

true or true = true;
true or false = true;
false or true = true;
false or false = false;
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Like most other programming languages, Q also has logical connectives for the short-
circuit evaluation of logical expressions, which are denoted by the operators and then and
or else. These operations are actually implemented as “special forms” which evaluate
their arguments from left to right only as far as required to determine the value of the
expression (cf. Chapter 9 [Special Forms], page 69). They are defined by the following
built-in equations:

true and then X = X;
false and then X = false;

false or else X = X;
true or else X = true;

The first operand is always evaluated. Depending on its value, the second operand may
not be evaluated at all. For instance, if X evaluates to false, then X and then Y immediately
reduces to false, without ever having to evaluate the second argument Y. On the other
hand, if X evaluates to true, then Y is evaluated and returned as the value of the expression.
The or else operation works analogously.

One reason for using short-circuit evaluation is efficiency: prevent unnecessary com-
putations when an initial part of a logical expression already determines the value of the
entire expression. Furthermore, short-circuit evaluation is sometimes essential to check a
condition before evaluating an expression depending on the validity of this condition. For
instance:

(X <> 0) and then (foo (1/X) > 0)

You should also note that, according to the above definitions, X and then Y and X or
else Y are always reduced if X is a truth value, even if the second operand Y does not evaluate
to a truth value. This may look a bit weird at first, but it is in fact the most reasonable
way to implement short-circuit evaluation in the Q language, since Q uses dynamic typing,
and hence the type of an expression is only known after it has been evaluated. In fact, this
“feature” can be quite useful at times. For instance, you can also use and then to write
down a simple kind of conditional expression like

check X and then bar X

where bar X is the value you wish to compute, but only if the condition check X holds.

The Q interpreter also uses the operators not, and and or to denote bitwise logical
operations on integers. Thus, not X denotes the one’s complement of an integer X, and
X and Y and X or Y the bitwise logical conjunction and disjunction of integers X and Y,
respectively. These operations behave as if negative integers were represented in two’s
complement (although GMP actually uses a sign-magnitude representation). This means
that for each integer X, -X = not X + 1, or, equivalently, not X = -X-1. For instance:

==> 17 and not 13
16

==> 17 or not 13
-13
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==> not _
12

These results become clear when considering that 17 has bits 0 (=1) and 4 (=16) on
(and all other bits off), while not 13 has bits 0 (=1), 2 (=4) and 3 (=8) off (and all other
bits on). Thus, writing these numbers as unsigned bit sequences with most significant bits
first, where ...1 denotes an infinite sequence of leading 1’s, we have:

17 and not 13 =
10001 and not 1101 = 10001 and ...10010 = 10000
= 16

17 or not 13 =
10001 or not 1101 = 10001 or ...10010 = ...10011 (= not 1100 = not 12)
= -13

Together with the built-in bit shift operations, the bitwise logical operations can also be
used to implement “bitsets”, i.e., sets of nonnegative integers represented by bit patterns.
See Section 10.1 [Arithmetic Functions], page 77, for details.

In case you are wondering about “exclusive or:” While this operation is not provided as
a builtin, you can easily define it yourself as follows:

xor X Y = (X or Y) and not (X and Y);

6.4.5 String/List/Tuple Operators

The ++ operator denotes concatenation, # is the length or size operator, and the subscript
operator ! is used for indexing. These operations work consistently on strings, lists and
tuples. For instance:

"abc"++"xy" ⇒ "abcxy"
[a,b,c]++[x,y] ⇒ [a,b,c,x,y]
(a,b,c)++(x,y) ⇒ (a,b,c,x,y)

#"abc" ⇒ 3
#[a,b,c] ⇒ 3
#(a,b,c) ⇒ 3

"abc"!1 ⇒ "b"
[a,b,c]!1 ⇒ b
(a,b,c)!1 ⇒ b

Note that indexing with the subscript operator starts at zero, s.t. X!0 and X!(#X-1)
denote the first and last member of a string, list or tuple, respectively. We also remark that
since ! is right-associative, double subscripts may have to be parenthesized. For instance,
compare (X!I)!J and X!I!J=X!(I!J).

It should also be noted that all list and tuple operators check that their first argument
is a well-formed list or tuple value. However, the second argument of the ++ operator may
in fact be any value. List concatenation just replaces the empty sublist marking the end
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of its first list argument with the second argument, as if it was defined by the following
equations:

[]++Ys = Ys;
[X|Xs]++Ys = [X|Xs++Ys];

Hence we have that, e.g., []++1 ⇒ 1 and [1,2]++3 ⇒ [1,2|3], which may look odd, but
is consistent with the above equations. Tuple concatenation works in an analogous manner.

6.4.6 The Sequence Operator

The sequence operator lets you evaluate sequences of expressions in a given order. The
value of the sequence is given by the rightmost expression. That is,

X || Y ⇒ Y.

The sole purpose of this construct is to allow operations with side-effects (such as I/O
functions) to be carried out sequentially. A typical example is

writes "Input: " || reads

which prints a prompt on the terminal and then reads in a string. (The built-in functions
writes and reads are described in Chapter 10 [Built-In Functions], page 77.)
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7 Equations and Expression Evaluation

“Computational processes are abstract beings that inhabit computers.” [Abel-
son/Sussman 1985, p.1]

At its core, any programming language faces the programmer with three distinct abstract
notions [Abelson/Sussman 1985]: the entities which are to be manipulated, usually referred
to as “data”, the computational “processes” which carry out those manipulations, and the
description of these processes by finite collections of computational rules, commonly called
“programs”.

As in other functional programming languages, all computations performed by Q scripts
are expression evaluations: The user specifies an expression to be evaluated, the interpreter
computes the value of that expression and prints it as the result of the computation.

Having described the “data” manipulated by Q scripts, expressions, we now turn to the
computational processes carried out on those expressions, expression evaluations, and their
description by collections of computational rules, equations.

7.1 Equations

In the Q language, there is in fact no such thing like a “function definition” in conven-
tional languages. Rather, definitions take the form of equations which describe how a given
expression, the left-hand side of the equation, can be transformed into another one, the cor-
responding right-hand side. Note the difference between this interpretation and common
mathematical usage in which an equation is usually something to be “solved”. Here we are
actually dealing with “rewriting rules”, i.e., the equations are oriented from left to right.
The syntax of equations is captured by the following grammar rules:

definition : expression ’=’ expression qualifiers ’;’
{’=’ expression qualifiers ’;’}

qualifiers : {qualifier}
qualifier : condition

| where-clause
condition : ’if’ expression

| ’otherwise’
where-clause : ’where’ expression ’=’ expression

{’,’ expression ’=’ expression}

Variables occurring on the left-hand side of an equation are taken to be universally
quantified. They play the role of formal parameters in conventional programming languages,
which are “bound” to their corresponding values when the equation is applied to an actual
expression value. For instance, suppose we wish to define a function sqr which squares
its argument. We know that to square something we simply multiply it with itself. The
corresponding equation is:

sqr X = X*X;

Here the left-hand side is simply the application of the function symbol sqr to an argu-
ment value X which stands for any actual value we might apply the sqr function to.
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An equation may also contain a collection of conditions and “local” variable definitions
(these two kinds of supplementary elements are also called qualifiers in the Q jargon), and
multiple right-hand sides (which are interpreted as a collection of equations for the same
left-hand side). An empty condition may be denoted with the keyword otherwise, which is
a convenient means to indicate the “default case” of a definition. For instance, the following
equations define the factorial function:

fac N = N*fac (N-1) if N>0;
= 1 otherwise;

The otherwise keyword is nothing but syntactic sugar; it can always be omitted. How-
ever, it tends to improve the readability of definitions like the one above.

In difference to function definitions in conventional programming languages, the left-
hand side of an equation may contain constant and structured argument patterns which
are to be matched against the actual parameters of a function. For instance, the following
equations, which involve constant values on the left-hand side, define the Fibonacci function:

fib 0 = 0;
fib 1 = 1;
fib N = fib (N-1) + fib (N-2) otherwise;

As an example for structured argument patterns, operations to extract the “head” (first
element, the “car” in Lisp terminology) and “tail” (list of remaining elements, the “cdr”)
of a list can easily be defined as follows:

hd [X|Xs] = X;
tl [X|Xs] = Xs;

Note that in the above example we actually only need one of the involved component
values. In such a case it is possible to employ the anonymous variable ‘_’ as a placeholder
for any component value we do not care for. For instance:

hd [X|_] = X;
tl [_|Xs] = Xs;

The anonymous variable can only be used on the left-hand side of an equation, i.e., it
is illegal to refer to the “value” of the anonymous variable on the right-hand side because
in fact this variable has no value. (In the interpreter this is different; there the anonymous
variable can be used to denote the value of the most recent evaluation result, see Section B.2
[Command Language], page 181.) We also remark that multiple instances of the anonymous
variable are matched independently from each other, therefore an equation like

foo _ _ = 0;

will be matched for any combination of arguments.

As another example, here is the definition of a function sum which computes the sum of
a list of numbers:

sum [X|Xs] = X+sum Xs;
sum [] = 0;

(The above definition is the Q equivalent for what Lisp programmers call “cdr’ing down
a list”.)
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In the same fashion, we can use tuples and applications to form expression patterns
on the left-hand side of an equation. For instance, we can define a binary tree insertion
operation as follows:

insert X nil = bin X nil nil;
insert X (bin Y T1 T2) = bin Y (insert X T1) T2 if X<Y;

= bin Y T1 (insert X T2) otherwise;

Here the nil and bin symbols act as constructors which are used to build a tree-like
data structure. Applications involving such symbols are usually normal form expressions
without any “defining” equations. In such a case they can also be declared const (cf.
Chapter 5 [Declarations], page 25), which means that the compiler will enforce that these
symbols cannot be “redefined” by means of an equation:

const nil, bin X T1 T2;

After this declaration, equations like the following will be invalid:

nil = ...; // WRONG!
bin X T1 T2 = ...; // WRONG!

The same applies to the built-in constant symbols true and false which are predeclared
as const, and also to built-in constants, i.e., numbers, strings, files, lists and tuples. The
general rule is that no constant value is allowed as the left-hand side, or the leftmost
(“function”) part of an application which forms the left-hand side of an equation.

Note that since expressions involving operators are nothing but syntactic sugar for ap-
plications, they can occur on the left-hand side of an equation as well (with the exception
of the ’ operator which is a constructor symbol, see Chapter 9 [Special Forms], page 69).
For instance, here is a collection of algebraic simplification rules which cause any expression
involving only + and * to be converted into a “sum of products” form:

// distributivity laws:
(X+Y)*Z = X*Y+X*Z;
X*(Y+Z) = X*Y+X*Z;
// associativity laws:
X+(Y+Z) = (X+Y)+Z;
X*(Y*Z) = (X*Y)*Z;

A word of caution: if the = operator occurs at the toplevel of the left- or right-hand side
of an equation, it must be parenthesized. This is necessary to prevent the = operator to
be confused with the = symbol used to separate both sides of an equation. (The same also
applies to variable definitions.) E.g., you should write something like

(X=X) = true;

instead of

X=X = true; // WRONG!

Although almost any expression can form the left-hand side of an equation, you should be
aware that an equation will only be applicable if the pattern you specify can actually occur
in the course of an expression evaluation. In particular, since the Q interpreter evaluates
expressions in a leftmost-innermost fashion, you should make sure that argument patterns
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match normal form expressions (cf. Section 7.6 [Normal Forms and Reduction Strategy],
page 50), unless the function to be defined is a special form (cf. Chapter 9 [Special Forms],
page 69). Otherwise the equation may be useless, albeit syntactically correct. The compiler
cannot verify these conditions, so they are at your own responsibility.

Using equations we can also easily define “higher order” functions which take functions
as arguments or return them as results. This is made possible by the fact that function
application is an explicit operation. For instance, as a generalization of the sum function
above, we can implement an operation which applies any “binary” function F to a list,
starting from a given initial value A:

foldr F A [] = A;
foldr F A [X|Xs] = F X (foldr F A Xs);

The foldr (“fold-right”) function takes as its arguments a function F, an initial value A,
and a list [X1,...,Xn], and computes the value

F X1 (F X2 (... (F Xn A)...)).

(The name of this function comes from the fact that the recursive applications of F are
parenthesized to the right.) Now we can easily define the sum function in terms of foldr
as follows:

sum = foldr (+) 0;

There is another version of the fold operation, which accumulates results from left to
right rather than from right to left:

foldl F A [] = A;
foldl F A [X|Xs] = foldl F (F A X) Xs;

We remark that although both functions work in linear time (with respect to the size of
the input list), the foldl function actually is more efficient than foldr in terms of stack
space requirements since its definition is “tail-recursive” (cf. Section 7.10 [Tail Recursion],
page 57).

As another example, here is the definition of the function map which maps a given
function F to each member of a list Xs:

map F [] = [];
map F [X|Xs] = [F X|map F Xs];

Finally, we also give an example for a function which returns another function. It is
a toy implementation of the lambda calculus, based on the combinatorial calculus. (This
definition will only work with simple kinds of expressions. Please refer to the standard
library script lambda.q described in Section 11.7 [Lambda Calculus], page 103, for a much
more comprehensive implementation which also properly handles the obscure cases. Also
note that the lambda function is declared as a special form which prevents its arguments
from being evaluated. This will be explained in Chapter 9 [Special Forms], page 69.)

special lambda X Y;

lambda X X = i;
lambda X (Y Z) = s (lambda X Y) (lambda X Z);
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lambda X Y = k Y otherwise;

/* combinator rules */

i X = X;
k X Y = X;
s X Y Z = X Z (Y Z);

For instance, you might wish to try the following:

==> lambda X (2*X)
s (s (k (*)) (k 2)) i

==> _ 4
8

7.2 Non-Linear Equations

If a variable has multiple occurrences on the left-hand side of a rule, each occurrence must
be matched to the same value. In term rewriting theory, such rules are called “non-linear”
(“non-left-linear”, to be more precise). The following definition implements an operation
uniq which removes adjacent duplicates from a list:

uniq [] = [];
uniq [X,X|Xs] = uniq [X|Xs];
uniq [X|Xs] = [X|uniq Xs] otherwise;

It is important to notice the difference between the syntactical notion of equality which
plays a role in definitions like the one above, and the “semantic” equality relation defined
by the = operator (cf. Section 6.4.3 [Relational Operators], page 35). Non-linear equations
and equations involving constants, such as

uniq [X,X|Xs] = uniq [X|Xs];
fib 0 = 0;

call for the verification of syntactic identities. While two expressions are considered syn-
tactically equal only if they print out the same in the interpreter, the meaning of the =
operation depends on built-in rules and equations specified by the programmer. For in-
stance, two different instances of the expression 0 always denote the same object. However,
since 0 is an integer and 0.0 a floating point number, these two expressions are syntacti-
cally different. Nevertheless, the = operator allows to compare integers and floating point
numbers. Indeed it asserts that 0 and 0.0 are “equal”.

If you would like to have an explicit syntactic equality operation, you can easily define
it yourself as follows:

eq X X = true;
eq _ _ = false otherwise;

In fact, this definition is provided in the stdlib.q script, see Chapter 11 [The Standard
Library], page 93.
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You should note that the strict separation of syntactic and semantic equality is actually
quite useful. First of all, it allows the = operation to be treated in a manner consistent with
other comparison operators such as < and >. Secondly, it allows you to tailor the definition
of = to your application. For instance, an application might call for a set data structure,
and you would like to be able to test whether two expressions of a certain kind represent the
same set. Now there are fairly sophisticated data structures for representing sets efficiently,
but almost none of them allow you to decide whether two objects represent the same set
simply on the basis of syntactic identity. Instead, you will have to provide an explicit =
operation which tests whether two set objects contain the same elements.

7.3 Free Variables

On the right-hand side of an equation (as well as in the condition part and the right-hand
sides of local definitions), we distinguish between bound variables, i.e., unqualified variable
symbols which are introduced in the left-hand side of an equation (or the left-hand side of a
local definition, see Section 7.4 [Local Variables], page 47), and free variables which are not
bound by any of the left-hand side patterns. Free variables can also be declared explicitly
using a var declaration (cf. Chapter 5 [Declarations], page 25). They are effectively treated
as (parameterless) function symbols, except that they may be assigned a value by means of
a variable definition. Variable definitions have the following syntax:

definition : ’def’ expression ’=’ expression
{’,’ expression ’=’ expression} ’;’

| ’undef’ identifier {’,’ identifier} ’;’

For instance, in the following equation,

foo X = C*X;

the variable C occurs free on the right-hand side and we have:

==> foo 23
C*23

We can assign a value to the variable as follows:

def C = 2;

The same effect can also be achieved by using the def command in the interpreter:

==> def C = 2

After this definition we have:

==> foo 23
46

Free variables are useful if you have a script which repeatedly refers to the same value
whose calculation may be costly or involve functions with side-effects (such as the built-
in fopen function, see Chapter 10 [Built-In Functions], page 77). By assigning such a
value to a variable, you can refer to it without having to recompute the value each time
it is required, as would be the case with a corresponding function definition. Note that
free variable definitions cannot be changed inside an equation, and therefore the use of
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free variables does not compromise referential transparency. This is in contrast to other
functional programming languages such as Lisp which allow you to modify the value assigned
to a variable in a function definition. In Q, you can count on that the value of a free variable
does not change during a single expression evaluation, although it may be altered between
different evaluations of the same expression.

The right-hand side of a variable definition may be any Q expression, as described in
Chapter 6 [Expressions], page 29. The expression is evaluated once, at the time the script
is loaded, and is then matched against the left-hand side of the definition, binding variables
to the corresponding component values of the right-hand side value. In the special case
that the left-hand side is a single variable, it is simply bound to the right-hand side value.
Whenever a defined variable occurs “free” on the right-hand side of an equation or variable
definition, it will then be replaced by the value of the assigned expression. For instance,
the following definition assigns the value exp 1.0 = 2.71828... to the (explicitly declared)
free variable e:

var e;
def e = exp 1.0;

Variable definitions are carried out in the order in which they occur in a script, s.t.
a definition may refer to the values of variables assigned in previous definitions. Unless
a variable has been declared const, it is also possible to override assignments made in
previous definitions, and to undefine a variable. Multiple definitions can be performed with
a single def statement. For instance:

def N = 99, K = N, N = 2*K+1, M = N;
undef N, K;

As already mentioned, the value assigned to a variable may also be changed with def
and undef statements in the interpreter, see Section B.2 [Command Language], page 181.

Free variable definitions can also involve a pattern on the left-hand side which is to be
matched against the supplied value. E.g.,

def (X,Y) = foo Z;

causes foo Z to be evaluated and to be matched against (X,Y). The interpreter then defines
the free variables X and Y accordingly. Pattern matching is performed in the same manner
as for the left-hand side of an equation. However, an error is reported if the match fails.

7.4 Local Variables

As already mentioned, an equation may also contain one or more auxiliary variable
definitions a.k.a. where clauses, which bind additional variables to their corresponding
values. In difference to the global definitions of “free” variables discussed in Section 7.3
[Free Variables], page 46, the definitions in where clauses are “local” to the rule in which
they occur, meaning that the values of these variables are only available in the rule they are
defined in. As in the case of free variable definitions, the left-hand side of each where clause
can be an arbitrary expression pattern which is to be matched against the value computed
from the corresponding right-hand side. The variables occuring on the left-hand side of
the definition will then be bound to their corresponding values, thereby becoming “bound”
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variables in the context of the rule, in addition to the variables occuring on the left-hand side
of the equation. Local definitions also act as additional conditions in that the rule will only
be applicable if all left-hand sides in where clauses match their corresponding right-hand
side values (this is guaranteed, of course, if each left-hand side is a single variable).

Local definitions are useful if the right-hand side of a rule repeatedly refers to the same
(maybe complicated) subexpression. You can avoid the recalculation of such a value be
assigning it to a variable, and referring to the variable in the right-hand side. For instance:

foo X = bar Y Z
where Y = baz X, Z = qux Y;

As already mentioned, pattern-matching definitions are permitted as well (and the
anonymous variable also works as usual). A failing match causes the entire rule to fail.
For instance,

foo Z = bar X Z where [X|_] = Z;

works like

foo [X|Xs] = bar X [X|Xs];

but avoids repeating the list value on the right.

Note that if a variable is bound by the left-hand side or a local definition of a rule, then
a global variable of the same name will be “shadowed” within the rule. However, you can
still access the value of the shadowed variable with a qualified identifier. For instance, with
the following definitions, foo 2 reduces to bar 2*99:

/* this is the script foo.q */
def FOO = 99;
foo X = FOO*foo::FOO where FOO = bar X;

The variable bindings in a single where clause are performed in the given order, and
each definition may refer to all left-hand side variables of the rule, as well as all variables
introduced in earlier definitions. Each use of a variable refers to its most recent definition.
It is also possible to have multiple where clauses, as in:

foo X = bar Y where Y = baz Z where Z = qux U where U = quux X;

Note that here the definitions will be processed from right to left. Such constructs are
convenient if there is a series of values to be computed in which one value depends on the next
one. Using multiple where clauses, you start off with the definitions immediately required by
the right-hand side of the rule, then add another where clause for the variables introduced
in the first clause, etc. The above definition is actually equivalent to the following:

foo X = bar Y where U = quux X, Z = qux U, Y = baz Z;

It is also possible to mix where clauses with conditions, as in:

foo X = bar Y if qux Y where Y = baz Z if quux Z where Z = bazz X;

Again, the different qualifiers are actually considered from right to left; the rule will
be aborted as soon as the first qualifier fails (i.e., a condition evaluates to false or the
left-hand side of a definition does not match the corresponding right-hand side), so that no
time is wasted with definitions which are not needed anyway.
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7.5 Type Guards

The Q language allows you to restrict the set of patterns which can be matched by a
left-hand side variable. This is done by augmenting any left-hand side occurrence of the
variable with a type guard, using the notation:

variable:type

For instance, to declare a type BinTree which comprises the constructor patterns nil
and bin X T1 T2, the following declaration might be used (cf. Chapter 5 [Declarations],
page 25):

public type BinTree = const nil, bin X T1 T2;

This declaration introduces two function symbols nil and bin, just as if they were
declared by:

public const nil, bin X T1 T2;

However, it also assigns these symbols to the type symbol BinTree. The type symbol
can then be used as a guard on variables to ensure that a variable is only matched to objects
of the given type. E.g., the following equation will only apply if the argument to the foo
function has the form nil or bin X T1 T2 for some subexpressions X, T1 and T2:

foo T:BinTree = ...;

This makes it possible to avoid explicit argument patterns like

foo nil = ...;
foo (bin X T1 T2) = ...;

in cases in which the component values are not actually required. Also, it allows you to
define operations on a given type without actually referring to the constructor symbols of
the type, and thereby makes it possible to avoid dependencies on implementation details.
You can even “hide” the constructor symbols of a type by declaring them private, which
makes the symbols accessible only to the script which declares the type they belong to. For
instance:

public type BinTree = private const nil, bin X T1 T2;

The Q language allows you to construct a hierarchy of types by making one type a
subtype of another. This is done by specifying a supertype following the type identifier
in a type declaration. For instance, to make BinTree a subtype of the type SearchTree,
BinTree would be declared as follows:

type BinTree : SearchTree = const nil, bin X T1 T2;

Now a variable of type SearchTree will not only match SearchTree’s, but also any object
of its subtype BinTree. In fact, we might have declared SearchTree as an “abstract” type
which does not provide any constructors at all:

type SearchTree;

Abstract supertypes like SearchTree are useful for factoring out generic operations which
are shared by different subtypes; see Chapter 8 [Types], page 61, for examples, and for a
more detailed discussion of the type guard concept.
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The Q language has nine predefined type symbols which can be used to distinguish
the corresponding types of objects built into the language: Int, Float, Num (which is
the supertype for both Int and Float), String, Char (the subtype of String denoting
the single-character strings), File, List, Tuple and Bool. (Besides these, there are also
two types Exception and SysException for dealing with exception values, cf. Section 10.6
[Exception Handling], page 86.) For instance, an operation isstr which determines whether
its argument is a string can be defined as:

isstr _:String = true;
isstr _ = false otherwise;

7.6 Normal Forms and Reduction Strategy

The process in which equations are applied in the Q interpreter to evaluate a given ex-
pression is fairly straightforward. In fact, it corresponds to the way in which we manipulate
algebraic formulae, and we learned how to do that in high school.

We say that an equation L=R is applicable to a given expression X, if we can substitute
actual values for the variables occurring in L s.t. we obtain X. This is also expressed as “L
matches X” or “X is an instance of L”. In this case, we can replace X by Y, where Y is the
expression obtained from R by replacing the variables occurring in L by their corresponding
values. We shall call such a replacement step a reduction, and write it down as X ⇒ Y.

For instance, given the rule

sqr X = X*X;

we have that

sqr 2 ⇒ 2*2

since the expression sqr 2 matches the left-hand side sqr X, with 2 being substituted for
the variable X. This works with compound expressions as well, even if they involve variables
themselves. For instance:

sqr (X+1) ⇒ (X+1)*(X+1).

Here, the compound expression (X+1) has been substituted for the variable X.

Equations are usually applied in the context of a larger expression to be evaluated. For
instance, we have that

sqr 2 + 2 ⇒ 2*2+2

by the application of the above definition of sqr to the subexpression sqr 2 of sqr 2 + 2.

Before we proceed, a remark on the role of the built-in operations of the Q language is in
order. Primitive operations, such as the built-in + and * operators described in Section 6.4
[Built-In Operators], page 33, do not require any equations specified by the programmer.
Instead, they may be thought of as being predefined by a large set of built-in equations.
Each application of a built-in rule also counts as a single reduction. For instance, we have
that

2*2 ⇒ 4
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by the built-in rule which handles the multiplication of integers.

Built-in rules take priority over any equations specified by the programmer. However, it
is possible to extend the definition of a primitive operation with equations supplied by the
programmer. A corresponding example has already been given in Section 7.1 [Equations],
page 41. By refining built-in definitions accordingly, you can also treat “exceptions” in
built-in operations; see Section 2.5 [Runtime Errors], page 16, for an example.

In order to complete the evaluation of a given expression, we have to repeatedly perform
single reductions until no further equations (built-in or user-defined) apply. We then say
that the resulting expression is in normal form, and interpret it as the value of the original
expression. For instance, the following reduction sequence leads to the normal form (i.e.,
value) 6 for the target expression sqr 2 + 2 (we still assume the definition of sqr introduced
above):

sqr 2 + 2 ⇒ 2*2+2 ⇒ 4+2 ⇒ 6.

Normal forms do not necessarily exist. Just as in conventional programming languages,
the evaluation may go into an endless loop and never return an answer. Even if a normal
form exists, it need not be unique – it may depend on which equations are used in the
reduction process and in what order. The problem is that at any point in the reduction
process there may be more than one “reducible” subexpression, and even if there is only
one such expression (termed a redex), there may be more than one applicable equation.

To illustrate this kind of problem, consider the definition of the sqr function from above,
and the target expression sqr (1+1). This expression admits three distinct reduction se-
quences:

sqr (1+1) ⇒ sqr 2 ⇒ 2*2 ⇒ 4
sqr (1+1) ⇒ (1+1)*(1+1) ⇒ 2*(1+1) ⇒ 2*2 ⇒ 4
sqr (1+1) ⇒ (1+1)*(1+1) ⇒ (1+1)*2 ⇒ 2*2 ⇒ 4.

The second and third reduction sequence appear to be almost the same, but the first
reduction sequence makes clear that it matters whether we reduce the subexpression (1+1)
before applying the definition of sqr or not. In the present example, the order in which
reductions are performed only affects the number of required reduction steps, but it is easy
to construct other systems of equations in which both the termination of a normal form
evaluation and the computed normal forms actually depend on the evaluation order.

Non-uniqueness of normal forms does not necessarily mean that there must be two or
more rules being applicable to a given expression. Ambiguities can also arise when an
equation “overlaps” with other equations or with itself, as in the following example:

foo (foo X) = bar X;

This system consisting of a single equation is terminating, but it has two distinct normal
forms for the expression foo (foo (foo X)), namely foo (bar X) and bar (foo X).

Indeed, the termination of rewrite systems and the uniqueness of normal forms are
important issues in the theory of term rewrite systems [Dershowitz/Jouannaud 1990]. The
Q language simply avoids these problems by imposing a reduction strategy which makes
the reduction process deterministic. The reduction strategy must specify unambiguously
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for each reduction step the redex that is to be reduced and the equation which is to be
applied. For this purpose the Q interpreter applies the following rules:

• Expressions are evaluated in applicative order, that is, from left to right, innermost
expressions first.

• Equations are applied in the order in which they appear in a script. Built-in rules
always take priority.

The leftmost-innermost strategy is common in many programming languages, and it also
corresponds to the “natural” way in which people tend to carry out calculations manually.
It means that at any point in the reduction process it is always the leftmost-innermost redex
which is to be reduced. In particular, this implies that in an application of the form F X
first F is evaluated, then X, before the value of F is applied to the value of X. Thus the first
reduction sequence from above,

sqr (1+1) ⇒ sqr 2 ⇒ 2*2 ⇒ 4

would be the one actually carried out in the interpreter in the course of the evaluation of
sqr (1+1).

The leftmost-innermost strategy resolves all ambiguities in the choice of redices during
a normal form evaluation. The second disambiguating rule allows to decide which equation
to apply if more than one equation is applicable to a given redex. As indicated, the default
is to apply equations in the order in which they appear in the source script. This allows you
to have equations with overlapping left-hand sides which naturally arise, e.g., in definitions
involving “special case rules” such as the definition of the fib function in Section 7.1
[Equations], page 41:

fib 0 = 0;
fib 1 = 1;
fib N = fib (N-1) + fib (N-2) otherwise;

We remark that the default textual order of equations can also be changed by using
an appropriate “rule priority” directive. This is described in Section 7.8 [Rule Priorities],
page 53.

The rule for applying equations is extended to the built-in equations of primitive op-
erations by assuming – as already mentioned – that the built-in rules come “before” any
equations specified by the programmer, and hence always take priority. We also remark
that external functions, which are declared with the extern modifier and implemented in
a C module, are treated in an analogous manner. In general, the interpreter will first try
a built-in rule, then an extern rule, then the equations supplied in the script. (The treat-
ment of extern functions is described in more detail in Appendix C [C Language Interface],
page 191.)

7.7 Conditional Rules

Conditional rules are applied in the same manner as simple equations, only we also have
to check the conditions of the rule. When the left-hand side of a conditional rule matches
the target expression, we first evaluate the condition (with left-hand side variables being
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replaced as usual). This expression must evaluate to a truth value, otherwise we cannot
decide whether the rule is applicable or not. (The Q interpreter generates a runtime error
in such cases.) The rule is applicable only when the condition evaluates to true.

For instance, recall the definition of the factorial function:

fac N = N*fac (N-1) if N>0;
= 1 otherwise;

The first rule is applicable only if N>0 evaluates to true; if it evaluates to false, the
second rule applies. Furthermore, if N happens to be incomparable with 0, then a runtime
error will occur.

Here’s how this definition is applied to evaluate the expression fac 3:

fac 3 ⇒ 3*fac (3-1) ⇒ 3*fac 2
⇒ 3*(2*fac (2-1)) ⇒ 3*(2*fac 1)
⇒ 3*(2*(1*fac (1-1))) ⇒ 3*(2*(1*fac 0))
⇒ 3*(2*(1*1)) ⇒ 3*(2*1)
⇒ 3*2 ⇒ 6.

Local variable definitions (cf. Section 7.4 [Local Variables], page 47) are treated in a
similar fashion. We first evaluate the right-hand side of the definition and match it against
the corresponding left-hand side. If the match fails, the rule is skipped. Otherwise, we bind
variables accordingly and proceed with the next qualifier or the right-hand side of the rule.

7.8 Rule Priorities

We already discussed that the Q interpreter normally considers equations in the order
in which they appear in a script. Hence, if all your equations go into a single script,
you simply write down overlapping equations in the order in which they should be tried
by the interpreter. However, if equations for the same expression pattern are scattered
out over different modules, then the rule order also depends on the order in which the
different modules are processed by the compiler. In the current implementation, the rules
of each module are processed when the first import or include declaration for the module
is encountered during a preorder traversal of the module graph starting at the main script,
but you should not rely on this.

Hence it is usually a bad idea to have overlapping equations scattered out over different
source files. However, in some situations this is hard to avoid. For instance, you might
decide to put all “default rules” for certain expression patterns in a separate module. But if
you simply import this module at the beginning of your main script then the default rules
might override all the other equations.

To work around this, the Q language allows you to explicitly attach priorities to equations
by means of a priority declaration, which has the following format:

declaration : ’@’ [’+’|’-’] unsigned-number

This specifies the given number (which must be an integer, optionally signed with ‘+’ or
‘-’) as the priority level of the following equations. In the current implementation, priority
levels must be 32 bit integers, i.e., in the range -0x80000000..0x7fffffff. Rules are
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ordered according to their priorities, highest priority first. Rules with the same priority are
considered in the order in which they appear in the script.

The priority level set with a priority declaration applies only to the script in which
the declaration is located. The default priority level, which is in effect up to the first @
declaration, is 0.

Note that even with priority declarations the built-in operations still take priority over
all user-defined rules, i.e., those operations effectively have infinite priority. (The same
applies to external functions, see Appendix C [C Language Interface], page 191.)

As a simple (and contrived) example for the use of priority declarations, consider the
following script:

@-1
foo X = -1; // "default" rule

@0
foo X:Num = 0; // "standard" rule

@+1
foo X:Int = 1; // "special case" rule

The second equation is at the default priority level, 0. The first equation, although it
comes before the second one, becomes a “fallback” rule by assigning it a low priority, -1.
The last equation is put on a high priority level, +1, and hence overrides both preceding
equations. The net effect is that the equations are actually ordered in reverse textual order.
You can verify this in the interpreter:

==> foo 77
1

==> foo 77.0
0

==> foo ()
-1

Of course, this example is somewhat silly, because in a single script we can easily arrange
equations in the correct textual order. However, if for some reason we had to put the three
rules into three different modules, then using the given priority declaration ensures that the
equations will always be applied in the correct order.

Priority levels should be used sparingly, if at all. Using low priorities to factor out a
module with default rules can occasionally be quite useful, but overriding rules with high
priorities is considered harmful and should be avoided whenever possible.

7.9 Performing Reductions on a Stack

The present and the following section contain material for the technically interested
reader which, while not being strictly necessary to work successfully with the Q program-
ming language, helps to understand the operation of the Q interpreter and to write better
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Q scripts. You might wish to skim the following at first reading, and later return to it when
you have become more proficient with the Q language and require some further background
knowledge.

While the “rewriting model” of expression evaluation introduced in Section 7.6 [Normal
Forms and Reduction Strategy], page 50, provides a nice conceptual model for the Q pro-
grammer, it is too inefficient to be a useful implementation model for the Q interpreter.
In particular, it would be rather inefficient to actually construct the full expressions which
occur as intermediate results in the course of a reduction sequence, and repeatedly scan
these expressions for the leftmost-innermost redex. Instead, we can evaluate expressions by
a simple recursive procedure as follows. The input to the algorithm is an expression X to
be evaluated.

1. If X is an application, list or tuple, evaluate the parts of X recursively, from left to right.
Proceed with step 2.

2. If a built-in (or extern) rule is applicable to X, invoke it and return the corresponding
value.

3. Otherwise, determine the first equation L=R which is applicable to X. If there is no such
rule, X is in normal form and is returned as the value of the expression. Otherwise we
recursively evaluate R (with variables instantiated to their corresponding values) and
return it as the value of the original expression.

(The above description of course leaves out many important details. For instance, the
interpreter will also have to take care of def’ed symbols, and we will have to organize the
search for an applicable equation. However, here we only want to give the general idea, and
not a complete implementation of the interpreter.)

The above procedure can actually be implemented non-recursively if we keep track of the
rules which are currently “active”, together with the corresponding variable bindings. This
information can easily be maintained on a stack. We illustrate this with a simple example.
Recall the definition of the sum function:

sum [X|Xs] = X+sum Xs;
sum [] = 0;

The evaluation of sum [1,2,3] then proceeds as follows:

sum [1,2,3] ⇒ 1+sum [2,3]:
sum [2,3] ⇒ 2+sum [3]:

sum [3] ⇒ 3+sum []:
sum [] ⇒ 0
3+0 ⇒ 3

sum [3] ⇒ 3
2+3 ⇒ 5

sum [2,3] ⇒ 5
1+5 ⇒ 6

sum [1,2,3] ⇒ 6

Each new level of indentation indicates that we “suspend” the current rule (push it on
the stack) and activate a new rule in order to evaluate some part of the right-hand side of the
suspended rule. When all parts of the right-hand side have been evaluated, we return to the
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suspended rule (pop it from the stack) and actually perform the reduction. More precisely,
we replace the left-hand side of the suspended rule by the result obtained by evaluating the
right-hand side, which is already in normal form. (We will of course have to keep track of
the results of intermediate reductions, which can be done on a second “evaluation” stack.
When the evaluation of the right-hand side is finished, the corresponding result will be on
top of the evaluation stack.)

If desired, we can easily reconstruct the “context” of a rule by following the chain of
stacked rules starting from the current rule, and proceeding towards the bottom of the
stack. For instance, when we perform the reduction

sum [] ⇒ 0

in the above example, the context of this rule is described by the following stacked rules:

sum [3] ⇒ 3+sum []
sum [2,3] ⇒ 2+sum [3]
sum [1,2,3] ⇒ 1+sum [2,3]

Thus, when sum [] gets reduced to 0, we have actually completed the following initial
part of the reduction sequence:

sum [1,2,3] ⇒ 1+sum [2,3] ⇒ 1+(2+sum [3]) ⇒ 1+(2+(3+sum []))
⇒ 1+(2+(3+0))

(Note that we never actually constructed intermediate results like the expression
1+(2+(3+sum [])). Rather, these expressions are represented implicitly by the contents of
the stack.)

We can also apply the above procedure to qualified rules accordingly. When the inter-
preter comes to consider a conditional rule, it pushes it onto the stack as usual. However, it
then first starts to evaluate the qualifying conditions and where clauses of the rule. When
the value of a condition has been computed, we can check whether it holds. If the computed
value is neither true nor false, the interpreter aborts the evaluation with a runtime error.
If it is true, it proceeds by evaluating other qualifiers or the right-hand side. If it is false,
however, it gives up on the current rule (pops it from the stack), and considers the next
applicable equation. A similar approach is used to handle local variable definitions.

For instance, consider once more the definition of the factorial function:

fac N = N*fac (N-1) if N>0;
= 1 otherwise;

The computation of fac 3 then proceeds as follows (the ? symbol indicates that the
condition N>0 has evaluated to false and hence the corresponding rule is abandoned):

fac 3 ⇒ 3*fac (3-1):
3>0 ⇒ true
3-1 ⇒ 2
fac 2 ⇒ 2*fac (2-1):

2>0 ⇒ true
2-1 ⇒ 1
fac 1 ⇒ 1*fac (1-1):

1>0 ⇒ true
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1-1 ⇒ 0
fac 0 ⇒ 0*fac (0-1):

0>0 ⇒ false ?
fac 0 ⇒ 1
1*1 ⇒ 1

fac 1 ⇒ 1
2*1 ⇒ 2

fac 2 ⇒ 2
3*2 ⇒ 6

fac 3 ⇒ 6

7.10 Tail Recursion

The above equations for the sum and fac functions are examples for recursive definitions.
The computational processes generated from such definitions are characterized by chains of
suspended rules in which the same rules are activated over and over again. For instance,
an evaluation of fac N with N>0 requires N recursive activations of the rule:

fac N = N*fac (N-1) if N>0;

Hence, if N becomes very large, the recursive definition of fac is in danger of running
out of stack space. In the following, we show how to avoid this defect by employing the
technique of “tail-recursive programming”.

It is a well-known fact that the factorial function also has an “iterative” implementation
which can be executed in constant memory space. The idea is to maintain a “running
product” P and a “counter” I which counts down from N to 1. The iterative algorithm can
be written down in a conventional programming language like Pascal as follows:

P := 1; I := N;
while I>0 do begin
P := P*I;
I := I-1;

end;

While the Q language does not provide any special looping constructs (and it also misses
an assignment operation), there is an alternative definition of fac which takes up the idea of
running products and counters and implements the factorial function in an iterative fashion:

fac N = fac2 1 N;
fac2 P I = fac2 (P*I) (I-1) if I>0;

= P otherwise;

Here, the “state variables” P and I are implemented as arguments of an “auxiliary”
function fac2 which is invoked from fac. Again, this is a recursive definition; it requires N
recursive applications of the rule

fac2 P I = fac2 (P*I) (I-1) if I>0;

when fac N is computed. However, in difference to our previous definition of fac, the
recursive rule is always applied “on top” of the target expression. Such rules are called tail-
recursive. (The name “tail recursion” comes from the fact that the recursive application of
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fac2 is the last operation considered during the leftmost-innermost evaluation of the right-
hand side.) For instance, the evaluation of fac 3 now proceeds as follows (abbreviating
reductions by built-in rules for ‘-’ and ‘*’):

fac 3 ⇒ fac2 1 3 ⇒ fac2 (1*3) (3-1)
⇒ fac2 3 2 ⇒ fac2 (3*2) (2-1)
⇒ fac2 6 1 ⇒ fac2 (6*1) (1-1)
⇒ fac2 6 0 ⇒ 6

Tail-recursive definitions can be employed for implementing all kinds of functions which
can be computed on a machine with a fixed set of “registers” and no auxiliary memory
[Abelson/Susssman 1985]. For instance, here is a tail-recursive implementation of the Fi-
bonacci function:

fib N = fib2 1 0 N;
fib2 A B N = fib2 (A+B) A (N-1) if N>0;

= B otherwise;

(This definition also has the desirable side effect that it cuts down the exponential
running time of the “naive” definition given in Section 7.1 [Equations], page 41, to linear.)

The Q interpreter employs a clever optimization trick, commonly known as tail recursion
optimization (see e.g., [Steele/Sussman 1975]), to actually execute tail-recursive definitions
within constant stack space. Hence no special looping constructs are required for imple-
menting iterative algorithms efficiently in the Q language.

Assume that in our stack model of expression evaluation we are working on a reduction
X ⇒ Y, and that we already recursively evaluated all parts of the right-hand side Y, but not
Y itself. Furthermore, suppose that in order to evaluate Y we will have to apply the rule Y
⇒ Z next. Then, instead of keeping the rule X ⇒ Y suspended and evaluating Y using rule
Y ⇒ Z recursively, we can also immediately perform the reduction X ⇒ Y and replace this
rule with Y ⇒ Z on the stack. Thus, the new rule Y ⇒ Z will not require any additional
stack space at all, but simply reuses the existing “activation record” for the X ⇒ Y rule. In
other words, instead of invoking the Y ⇒ Z rule as a “subroutine”, we effectively perform a
kind of “goto” to the new rule. We also refer to this process as performing the tail reduction
X ⇒ Y. The evaluation now proceeds as if we had been working on the rule Y ⇒ Z in the
first place.

For instance, with the new definition of fac the evaluation of fac 3 would be carried
out using only a single level of suspended rules (again, the ? symbol signals abortion of a
rule with failing qualifier):

fac 3 ⇒ fac2 1 3:
fac2 1 3 ⇒ fac2 (1*3) (3-1):

3>0 ⇒ true
1*3 ⇒ 3
3-1 ⇒ 2

fac2 3 2 ⇒ fac2 (3*2) (2-1):
2>0 ⇒ true
3*2 ⇒ 6
2-1 ⇒ 1

fac2 6 1 ⇒ fac2 (6*1) (1-1):
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1>0 ⇒ true
6*1 ⇒ 6
1-1 ⇒ 0

fac2 6 0 ⇒ fac2 (6*0) (0-1):
0>0 ⇒ false ?

fac2 6 0 ⇒ 6

Besides the tail recursion optimization technique discussed above, the Q interpreter also
automatically optimizes toplevel sequences (i.e., applications of the || operator which are
not inside a nested subexpression) on the right-hand side of equations, s.t. basic imperative-
style looping constructs can be executed in a tail-recursive fashion as well. Suppose, for
instance, that we want to implement a do function which applies a function to each member
of a list, like the map function discussed in Section 7.1 [Equations], page 41, but instead
of collecting the results in an output list simply throws away the intermediate values and
returns (). This is useful, of course, only if the function is evaluated solely for its side-
effects, e.g., if we want to print out all elements of a list. A straightforward definition of do
looks as follows:

do F [] = ();
do F [X|Xs] = F X || do F Xs;

Now this definition is not tail-recursive in the strict sense alluded to above, because the
last application on the right-hand side of the second rule actually involves (||) and not the
do function. (Recall that an infix expression like X||Y is nothing but syntact sugar for the
function application (||) X Y.)

However, as a remedy, the Q interpreter actually implements toplevel sequences on the
right-hand side of a rule by direct stack manipulation. That is, the first argument of a
sequence is thrown away as soon as it has been computed. By these means, the interpreter,
after having computed F X, effectively carries out the reduction do F [X|Xs] ⇒ do F Xs on
which it can perform tail recursion optimization as usual. Thus the above definition actually
works in constant stack space, as one might reasonably expect.

7.11 Error Handling

There are a few conditions which may force the Q interpreter to give up on a reduction
sequence and abort the evaluation with a runtime error message. These conditions are listed
below.

• The user interrupts the evaluation by hitting the interrupt key (usually Ctl-C). In
this case it is possible to resume the evaluation in the debugger (cf. Appendix D
[Debugging], page 199), provided that debugging has been enabled with the break on
command (see Section B.2 [Command Language], page 181).

• The qualifying expression of a conditional rule evaluates to something which is not a
truth value. In this case, if break is on, the debugger is invoked to inform the user of
the equation which gave rise to the error condition.

• The attempt to allocate memory for runtime symbols, stack space or an expression on
the heap fails (memory overflow).
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• Stack overflow. (The interpreter actually allows you to make the stack as large as you
like, provided you have enough main memory, but it is usually a good idea to provide
a reasonable limit to catch infinite recursions before you run into a memory overflow
condition.)

All of the above error conditions can also be caught and handled by the running script
in any desired manner, see Section 10.6 [Exception Handling], page 86.
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8 Types

Q uses dynamic typing like, e.g., Lisp or Smalltalk, as opposed to statically-typed lan-
guages such as Pascal, Eiffel or Haskell. In languages with static typing, a variable or
function parameter can only hold a value which matches its prescribed type (which can be
a “polymorphic” type in languages like Eiffel and Haskell, but still the type of the value
is restricted). In dynamically typed languages, however, the actual value of a variable or
function parameter is not known in advance. Consequently, in Q it is only possible to dis-
tinguish different types of objects – such as search trees, queues, arrays and the like – by
selecting an appropriate set of constructor symbols for each type of object. This chapter
discusses Q’s notion of type guards which allows you to make the assignment of construc-
tors to a type explicit, and to use this information in order to restrict the applicability of
equations to objects of a given type.

8.1 Using Type Guards

As in any programming language, the careful design of application-dependent data struc-
tures is one of the main concerns when developing Q scripts which go beyond simple numeric,
string and list processing. As a typical example for a non-list data structure which plays a
prominent role in many Q scripts, let us consider binary search trees, which are a convenient
means to implement sets, bags, dictionaries and the like. We will use this data structure as
a running example throughout this chapter.

A typical choice of constructors for binary trees is the following:

public const nil, bin X T1 T2;

To make explicit the fact that nil and bin belong to the binary tree type, we can also
use a type declaration which introduces the type symbol BinTree, as discussed in Chapter 5
[Declarations], page 25:

public type BinTree = const nil, bin X T1 T2;

This declaration tells the interpreter that each expression of the form nil or bin X T1
T2 should be considered as a member of the BinTree type. The type symbol can then be
used as a guard on variables to ensure that a variable is only matched to objects of the
given type, see Section 7.5 [Type Guards], page 49. E.g., the following rule employs such a
type guard in order to restrict the argument of the foo function to BinTree objects:

foo T:BinTree = ...;

This makes it possible to avoid explicit argument patterns like

foo nil = ...;
foo (bin X T1 T2) = ...;

in cases in which the component values are not actually required. This can simplify matters
a lot, in particular if multiple arguments have to be matched to a given type. Also, it is
more efficient than checking the type of an object in the qualifier part of a rule by using a
user-defined predicate, since the interpreter can use the type information right away in the
pattern matching process.
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Another important reason for preferring type guards over explicit argument patterns is
the issue of “information hiding”. With the former definition of the foo function above we
do not make any explicit reference to the constructor patterns making up the BinTree data
type. This makes it possible to treat BinTree as an abstract data type (ADT) which hides
the underlying implementation details (in particular the constructors), while still being able
to verify that the proper kind of object is supplied as an argument. Any access to objects of
the ADT will then be implemented by referring to the appropriate operations supplied by
the type. In fact, we can make the constructors private symbols which are only accessible
to the script which implements the BinTree type:

public type BinTree = private const nil, bin X T1 T2;

As a concrete example, let us assume the standard search tree operations insert T X
and delete T X, which insert an element X into a tree T, and remove it from the tree,
respectively. These operations can be implemented as follows (see [Bird/Wadler 1988]):

public insert T X, delete T X;
private join T1 T2, init T, last T;

insert nil Y = bin Y nil nil;
insert (bin X T1 T2) Y = bin X (insert T1 Y) T2 if X>Y;

= bin X T1 (insert T2 Y) if X<Y;
= bin Y T1 T2 if X=Y;

delete nil Y = nil;
delete (bin X T1 T2) Y = bin X (delete T1 Y) T2 if X>Y;

= bin X T1 (delete T2 Y) if X<Y;
= join T1 T2 if X=Y;

join nil T2 = T2;
join T1 T2 = bin (last T1) (init T1) T2 otherwise;

init (bin X T1 nil) = T1;
init (bin X T1 T2) = bin X T1 (init T2) otherwise;

last (bin X T1 nil) = X;
last (bin X T1 T2) = last T2 otherwise;

(Note that the last and init operations return the last element of a binary tree, and a
binary tree with the last element removed, respectively. The join, init and last functions
are for internal use only, and can hence be implemented as private functions.)

Furthermore, we assume the following function mkbintree which constructs a binary
tree from a list, and the function members which returns the list of elements stored in a tree
(in ascending order):

public mkbintree Xs;
mkbintree Xs:List = foldl insert nil Xs;

public members T;
members nil = [];
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members (bin X T1 T2) = members T1 ++ [X|members T2];

(The definition of mkbintree employs the standard foldl operation, see Chapter 11
[The Standard Library], page 93.) We can use the interface operations of the BinTree ADT
in order to implement the functions union and diff which add and remove all members of
a tree to/from another tree:

public union T1 T2; // add elements of T2 to T1
union T1:BinTree T2:BinTree

= foldl insert T1 (members T2);

public diff T1 T2; // remove elements of T2 from T1
diff T1:BinTree T2:BinTree

= foldl delete T1 (members T2);

Observe that no explicit reference is made to the BinTree constructors; we only employ
the public “interface” functions insert, delete and members of the BinTree ADT. This
allows us to change the realization of the data structure without having to rewrite the
definitions of union and diff. Still, the definitions of union and diff are “safe”; the
BinTree type guard ensures that the arguments passed to union and diff are indeed
BinTree objects capable of carrying out the requested operations.

8.2 Built-In and Enumeration Types

Type guards are also the only way for verifying that the actual value of a variable belongs
to one of the built-in types integers, floating point numbers, strings and files, since there
is no way for writing out all “constructors” for these kinds of objects – there are infinitely
many (at least in theory). For this purpose, the type symbols Int, Float, String and File
are predefined.

There also is a type named Num which, when used as a guard on variables, matches
numeric (i.e., both integer and floating point) values, and the type Char which denotes the
single-character strings. Technically, Num is the supertype of both Int and Float, and Char
is a subtype of the String type; more about that in Section 8.3 [Sub- and Supertypes],
page 64. Moreover, Char is also treated as an enumeration type, see below.

The built-in List type matches all list expressions of the form [] or [X|Xs]. This type
is used to restrict the applicability of an equation to list arguments. For instance, the
following equations define a function reverse which reverses a list:

reverse Xs:List = foldl push [] Xs;
push Xs:List X = [X|Xs];

The Tuple type is completely analogous: it matches tuples of arbitrary sizes, i.e., ex-
pressions of the form () and (X|Xs).

The predefined Bool type is a means to refer to objects which are truth values. It can
be thought of as being predefined as follows:

public type Bool = const false, true;
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Types like the built-in Bool type, which only consist of nullary const symbols, are also
called enumeration types. You can easily define such types yourself, e.g.:

type Day = const sun, mon, tue, wed, thu, fri, sat;

The Q language provides special support for enumeration types (including the built-in
Bool type, and also the Char type), by means of the following operations:

• Members of an enumeration type can be compared using the relational operators (cf.
Section 6.4.3 [Relational Operators], page 35), assuming the order in which the con-
stants are listed in the type declaration.

• The succ and pred functions (see Section 10.1 [Arithmetic Functions], page 77) produce
the successor and the predecessor of an enumeration type member.

• The ord function (see Section 10.4 [Conversion Functions], page 79) computes the
ordinal number of an enumeration type member.

Thus, for instance, sun < mon ⇒ true, ord sun ⇒ 0, and succ sun ⇒ mon. Note that
there is no builtin operation for converting ordinal numbers back to the corresponding mem-
bers of a given type. However, using the builtin isconst function (see Section 10.7 [Mis-
cellaneous Functions], page 90) and the standard library while function (see Section 11.1
[Standard Functions], page 94), you can list all members of an enumeration type starting
at a given constant A as follows:

enum A = while isconst succ A;

Now it is an easy matter to define a variable which stores the member list:

var days;
def days = tuple (enum sun);

Note that we convert the list of days to a tuple here, which gives us constant-time access
to the individual members, and is also more space-efficient. Using these definitions, we have
the following:

==> days
(sun,mon,tue,wed,thu,fri,sat)

==> days!4
thu

As already mentioned, the built-in Char type is also an enumeration type, which consists
of all the characters in the local character set. Thus the enum function defined above also
works on character values.

8.3 Sub- and Supertypes

The Q programming language also provides a subtype concept similar to the notion
of single inheritance in object-oriented programming languages such as Smalltalk. For
instance, we can modify our declaration of the BinTree type (cf. Section 8.1 [Using Type
Guards], page 61) in order to make BinTree a subtype of the supertype SearchTree as
follows:
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public type BinTree : SearchTree = private const nil, bin X T1 T2;

Quite often, supertypes are abstract types which do not provide their own set of construc-
tor symbols, but are simply used to factor out common operations shared among several
“concrete” types. For instance, the SearchTree type might have been declared simply as
follows:

public type SearchTree;

Now variables of type SearchTree will also match objects of its subtype BinTree, as
well as of any other subtype of SearchTree. We can turn the union and diff functions
from Section 8.1 [Using Type Guards], page 61, into operations on the SearchTree type as
follows:

union T1:SearchTree T2:SearchTree
= foldl insert T1 (members T2);

diff T1:SearchTree T2:SearchTree
= foldl delete T1 (members T2);

As the next step, we might introduce another type AVLTree providing the same interface
operations insert, delete and members as the BinTree type, but implementing these
operations in terms of AVL trees rather than simple binary trees. (AVL trees are a variant
of binary search trees in which the trees are kept balanced, and thus logarithmic insertion
and deletion times can be guaranteed.) If we make AVLTree another subtype of SearchTree,
then the union and diff operations can be applied to AVLTree objects just as well as to
BinTree’s. In fact, the operations will even work if we mix argument types, e.g., provide a
BinTree as the first argument of union and an AVLTree as the second! By these means, it
is possible to define polymorphic operations which are applicable to several different types
sharing the same (subset of) interface functions.

For the sake of concreteness, here is an implementation of the AVLTree type. The shl,
shr, rol and ror functions implement the common AVL tree rotation operations which
are used to keep the tree balanced; see [Bird/Wadler 1988] for details. We assume that
the declaration of the SearchTree type is in a separate module searchtree.q, along with
the declarations of the shared members, insert and delete operations, as well as the
declarations and definitions of the generic union and diff functions.

include searchtree;

/* H denotes the height of a nonempty AVL tree */

public type AVLTree : SearchTree = private const nil, bin H X T1 T2;

public mkavltree Xs;

private mknode X T1 T2;
private join T1 T2, init T, last T, height T, slope T, rebal T;
private rol T, ror T, shl T, shr T;

mkavltree Xs:List = foldl insert nil Xs;
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members nil = [];
members (bin H X T1 T2) = members T1 ++ [X|members T2];

insert nil Y = bin 1 Y nil nil;
insert (bin H X T1 T2) Y

= rebal (mknode X (insert T1 Y)) T2 if X>Y;
= rebal (mknode X T1 (insert T2 Y)) if X<Y;
= bin H Y T1 T2 if X=Y;

delete nil Y = nil;
delete (bin H X T1 T2) Y

= rebal (mknode X (delete T1 Y) T2) if X>Y;
= rebal (mknode X T1 (delete T2 Y)) if X<Y;
= join T1 T2 if X=Y;

join nil T2 = T2;
join T1 T2 = rebal (mknode (last T1) (init T1) T2) otherwise;

init (bin H X T1 nil) = T1;
init (bin H X T1 T2) = rebal (mknode X T1 (init T2)) otherwise;

last (bin H X T1 nil) = X;
last (bin H X T1 T2) = last T2 otherwise;

/* mknode constructs a tree node, computing the height value */

mknode X T1 T2 = bin (max (height T1) (height T2) +1) X T1 T2;

/* height and slope compute the height and slope (difference between
heights of the left and the right subtree), respectively */

height nil = 0;
height (bin H T1 T2) = H;

slope nil = 0;
slope (bin H X T1 T2) = height T1 - height T2;

/* rebal rebalances after single insertions and deletions */

rebal T = shl T if slope T = -2;
= shr T if slope T = 2;
= T otherwise;

/* rotation operations */

rol (bin H1 X1 T1 (bin H2 X2 T2 T3))
= mknode X2 (mknode X1 T1 T2) T3;
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ror (bin H1 X1 (bin H2 X2 T1 T2) T3)
= mknode X2 T1 (mknode X1 T2 T3);

shl (bin H X T1 T2) = rol (mknode X T1 (ror T2)) if slope T2 = 1;
= rol (bin H X T1 T2) otherwise;

shr (bin H X T1 T2) = ror (mknode X T1 (ror T2)) if slope T2 = -1;
= ror (bin H X T1 T2) otherwise;
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9 Special Forms

As discussed in Chapter 7 [Equations and Expression Evaluation], page 41, the Q inter-
preter evaluates expressions in applicative, i.e., leftmost-innermost, order. This means that
the arguments of a function are usually evaluated before the function is applied to them,
which is also known as call by value. Occasionally, it is useful or even essential to defer the
evaluation of arguments until they are actually required in the course of a computation.
For this purpose, the Q language lets you introduce so-called special forms which receive
their arguments unevaluated (i.e., using call by name). This chapter discusses how these
constructs are defined and used.

9.1 Basic Concepts

Consider the following definition from the standard library which implements a simple
kind of conditional expression (see also Section 11.10 [Conditional Expressions], page 108):

ifelse P X Y = X if P;
= Y otherwise;

The ifelse function takes as its first argument a truth value which is used to determine
whether the second or third argument is to be returned as the value of the conditional
expression. Although the above definition is perfectly correct, using applicative order eval-
uation with this definition is clearly inappropriate since all arguments must already have
been evaluated before the ifelse function gets applied to them. Since either the second
or third argument is simply thrown away, the effort involved in the evaluation of this argu-
ment is wasted. As an extreme case, e.g., Y might not have a terminating evaluation at all,
in which case the evaluation of ifelse P X Y would not terminate either even though Y is
actually not required if P happens to evaluate to true.

Instead, we would like to have ifelse evaluate its arguments only as they are required.
In the Q language, this can be done by simply declaring ifelse as a special form. All we
have to do is to precede the above equations with the following declaration:

public special ifelse P X Y;

The syntax of such declarations has already been introduced in Chapter 5 [Declarations],
page 25. The special keyword must be followed by a function identifier and a sequence of
variable symbols (the variable symbols only serve to specify the number of arguments, and
are otherwise treated as comments). If the argument list is omitted, the function symbol
is actually treated as an ordinary (non-special) symbol. Otherwise the given arguments are
declared as special (a.k.a. call by name) arguments, i.e., arguments which are treated as
literals and hence are not evaluated when the given function is applied to them. Special
arguments will be left unevaluated as long as they are “protected” by a special form; but as
soon as the corresponding values are referred to in a “non-special” context, the interpreter
will automatically evaluate them.

Thus the above declaration of the ifelse function tells the Q interpreter that this
function expects three special arguments P, X and Y which should be left unevaluated until
their values are actually required in the qualifier or the right-hand side of an equation in
ifelse’s definition. Consequently, when the interpreter comes to consider the first rule,



70 The Q Programming Language

ifelse P X Y = X if P;

it will first evaluate P to obtain the value of the condition part of this rule. If P evaluates
to true, X will be evaluated and returned as the value of the left-hand side expression.
Otherwise (if P evaluates to false), X will be left unevaluated, and the interpreter considers
the next rule,

ifelse P X Y = Y otherwise;

which causes it to evaluate Y and reduce ifelse P X Y to this value.

Note that a special argument is evaluated each time its value is required on the right-hand
side of a definition. Consider, for instance:

special foo X;
foo X = bar X X;

When this rule is applied, X actually gets evaluated twice, once for each occurrence on
the right-hand side of the equation. If this is not desired, you can introduce a local variable
binding, e.g.:

special foo X;
foo X = bar Y Y where Y = X;

Another important point is that in the Q language, special forms are indeed a runtime
feature. This means that special forms are not only recognized at compile time, but also
when they are passed as arguments or returned as function results in the course of a com-
putation (which usually cannot be predicted at compile time). For instance, if we define
foo as follows:

special bar X;
foo = bar;

then foo (1+1) evaluates to bar (1+1) and not to bar 2, although foo itself is not declared
to be a special form. This also works if you pass bar as a functional parameter:

special bar X;
foo F X = F (X+1);

Given the above definition, foo bar 1 will evaluate to bar (1+1).

On the other hand, you must take care that arguments to special functions which are
passed on by other functions are not evaluated too early. For instance, if the apply function
is defined as follows:

apply F X = F X;

and is then invoked as apply bar (1+1) then (1+1) will be evaluated even though bar is a
special form. The reason is that the argument (1+1) is evaluated before apply is applied
to it, since we have not declared apply as a special form as well. As a general rule, you
should make any function a special form that passes its arguments to another special form,
unless you explicitly wish to evaluate these arguments.

Up to now, we have only considered “pure” special forms, which receive all their argu-
ments unevaluated. Many functions, however, require a mixture of special and non-special
arguments. The Q language provides two different methods for dealing with such situations.
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First, you can force the evaluation of a special argument at runtime using the ‘~’ (tilde or
“force”) operator:

special foo P X;
foo P X = ifelse ~P (bar X) X;

Here, the condition P is evaluated before it is passed on to the ifelse special form
(which is as defined above). This method is useful if we only occasionally have to evaluate
a parameter of a special form.

We remark that you can also force expressions outside a special form; in this case ‘~’ acts
as the identity operation, i.e., the argument expression (which is already in normal form)
is simply returned as is.

If we always want to evaluate a given parameter of a special function, we can also
declare the corresponding argument as non-special which effectively turns the argument
into an ordinary call by value parameter. This is done by preceding the argument with the
‘~’ symbol in the declaration of the function symbol. For instance, in the above definition
of the ifelse function the first argument will be evaluated anyway. Hence we may as well
make it a non-special argument. The corresponding declaration reads as follows:

public special ifelse ~P X Y;

With this declaration (which is precisely how ifelse is actually declared in the cond.q
standard library module), the ifelse function always receives its first argument evaluated,
while the other two arguments are special. This works exactly like an explicit application
of the ‘~’ operator, but releases you from the burden of having to force evaluation of the
argument in every application of the ifelse function. It is also slightly more efficient since
the argument does not have to be constructed as a literal expression, but can be evaluated
right away before the ifelse function is applied to it.

Let us briefly comment on Q’s special forms versus “real” lazy evaluation in functional
languages like Haskell. It should be clear by now that Q allows you to keep a special argu-
ment from being evaluated as long as you like, maybe “to eternity”. That is, the interpreter
actually computes so-called “weak” normal forms in which special arguments are left uneval-
uated, even if these arguments are reducible. This is similar to the way deferred evaluation
is handled in traditional functional languages featuring a basic eager evaluation strategy. In
contrast, a pure lazy functional language interpreter will eventually reduce each expression
to a “true” normal form to which no definition is applicable. Both approaches have their
pros and cons. The leftmost-outermost strategy of lazy functional language interpreters
is in fact only truly lazy for the lambda and combinatorial calculi used by these systems,
which are very special kinds of rewriting system. In general term rewriting, however, there
is no single “optimal” evaluation strategy; in fact, the problem to devise a terminating, let
alone an optimal reduction strategy for a given rewriting system, even for a single input ex-
pression, amounts to solving the infamous halting problem which is undecidable. Although
the Q interpreter uses a fixed built-in leftmost-innermost evaluation strategy, special forms
effectively give you full control over the evaluation strategy. Moreover, special forms are
also a powerful device for implementing “meta functions” which operate on other, literal
expressions. This is discussed in more detail in Section 9.4 [The Quote Operator], page 73.
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9.2 Special Constructors

Special forms prevent their arguments from being evaluated until they are used in a
context which is not “protected” by another special form. In particular, you can also have
special constructors which protect their arguments until they are extracted in an ordinary
context. A prime example for this are streams, a kind of infinite list data structure. We
can implement streams using a type definition like the following:

type Stream = special const nil, bin X Xs;

Just like lists, a stream consists of a head element, X, and a stream of remaining elements,
Xs. Now the “head” and “tail” operations for lists (cf. Section 7.1 [Equations], page 41)
carry over to streams as follows:

hd (bin X _) = X;
tl (bin _ Xs) = Xs;

Lisp programmers should note that this implementation does not require any explicit
“delay” and “force” operations; all necessary evaluations are performed implicitly by the Q
interpreter. For instance, consider the stream of all integers starting from N:

ints N = bin N (ints (N+1));

With leftmost-innermost evaluation, the above definition would certainly cause grief,
because the recursive invokation of ints would send the interpreter into an infinite recursion.
However, since bin is a special form, the evaluation of the nested ints term is deferred,
and we have the following:

==> def nat = ints 1

==> nat
bin 1 (ints (1+1))

==> hd nat; tl nat
1
bin 2 (ints (2+1))

We can also have finite streams if we use the nil constant to signal the end of a stream,
and most common list operations carry over to streams accordingly. In difference to lists,
streams produce their elements only “on demand”. This paves the way for some important
and powerful programming techniques. For instance, streams are a useful device to imple-
ment different kinds of backtracking and dynamic programming algorithms in a uniform
setting. Please refer to [Abelson/Sussman 1985] for more details. The standard library in-
cludes an implementation of streams which is described in Section 11.9 [Streams], page 106.

9.3 Built-In Special Forms

Some built-in operations of the Q language are actually implemented as special forms.
This is necessary, in particular, in the case of the logical connectives and then and or else
which are evaluated in “short-circuit mode”, see Section 6.4.4 [Logical and Bit Operators],
page 36. The first argument of these operations is non-special, but the second argument
is only evaluated if it is needed. For instance, the and then operator first checks whether
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its first (evaluated) argument is a truth value (if not, the built-in rule fails). Then, if
the first argument is false, false is returned – there is no need to take a look at the
second argument. Otherwise, the second argument is evaluated and returned as the value
of the expression. The or else operation is defined analogously. These rules allow the Q
interpreter to perform the following reductions immediately, without ever having to evaluate
the second argument foo X:

true or else foo X ⇒ true
false and then foo X ⇒ false

9.4 The Quote Operator

Another built-in special form is the predefined quote operator ‘’’, which acts as a con-
structor that protects its single argument expression from being evaluated. This construct
is useful if you wish to treat certain expressions (which may or may not be in normal form)
as literal objects rather than having them evaluated. For instance:

==> ’(1+1)
’(1+1)

Lisp programmers should note that the quote operator is in fact a constructor, and not
an operation which returns its single argument unevaluated. This is essential since in the
Q language an expression only remains unevaluated as long as it is protected by a special
form – an expression which occurs outside the context of a special form is always in normal
form.

Another fact that deserves mentioning is that ‘’’ is just an “ordinary” special form, and
does not involve any special “magic” on the side of the interpreter. In particular, ‘’’ does
not inhibit variable replacements in rules like the following:

special foo X;
foo X = ’(X+1);

Given the above definition, foo Y ⇒ ’(Y+1), i.e., the X variable on the right-hand side
is not treated as a literal. However, as the very same example shows, you can employ ‘’’
to quote a free variable, and thereby defer its evaluation:

==> def Y = 99; foo Y
’(Y+1)

==> foo ~Y
’(99+1)

The force operator ‘~’ works in quoted expressions as usual:

==> ’(1+~(2+3))
’(1+5)

Moreover, there is another, similar operation, the ‘‘’ (backquote or “splice”) operator,
which forces evaluation of its argument like the ‘~’ operator, but also “unquotes” the result.
For instance, using the same foo function as above, we have:

==> ’(‘(foo Y)/2)
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’((Y+1)/2)

Like the force operator, the splice operator also works outside a special form, in which
case the unquoted expression is evaluated as usual. Moreover, if the evaluated argument is
an unquoted expression, it is returned as is; in this case, ‘‘’ does exactly the same as the
‘~’ operator.

The splice operator is the fundamental operation when constructing quoted expressions
from smaller quoted pieces, by “splicing” the pieces into a “template” expression. Lisp pro-
grammers will be familiar with this technique. However, there are some notable differences
between Q’s ‘~’/‘‘’ and Lisp’s ‘,’/‘@,’ constructs:

• Splicing removes a quote level, rather than a list level.

• Q’s force and splice operators are active operations which can be applied in arbitrary
contexts, not only in quoted terms. Thus no special “quasiquote” construct is needed.

• There is no means to quote the force and splice operations themselves – they always
force evaluation, in any context.

We also remark that, in contrast to the quote operator, the force and splice operations do
need special support from the interpreter. They are the only operations which are evaluated
while a special form is being processed.

When used in concert, the quotation operators ‘’’, ‘‘’ and ‘~’ become powerful tools for
the symbolic manipulation of literal expressions. They allow you to define functions which
analyze and transform an expression before the modified expression is finally evaluated.
Such “meta-functions” are useful in many applications, and are an essential requisite in
artificial intelligence algorithms. Substantial examples can be found in the standard library
scripts, see Chapter 11 [The Standard Library], page 93; in particular, take a look at how
the lambda and listof functions are implemented. As a simple (and somewhat contrived)
example, let us write a function which takes an arbitrary quoted expression and replaces
each instance of a foo X subterm by a corresponding bar X expression:

foo X = X-1;
bar X = X+1;

foobar ’(foo X) = ’(bar ‘(foobar ’X));
foobar ’(X Y) = ’(‘(foobar ’X) ‘(foobar ’Y));
foobar ’(X|Y) = ’(‘(foobar ’X)|‘(foobar ’Y));
foobar ’[X|Y] = ’[‘(foobar ’X)|‘(foobar ’Y)];
foobar X = X otherwise;

To see foobar in action, try the following:

==> def x = 12, y = 14, X = ’(x+foo (y+foo (x*y)))

==> ‘X
192

==> foobar X
’(x+bar (y+bar (x*y)))
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==> ‘_
196
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10 Built-In Functions

Besides the built-in operators already discussed in Chapter 6 [Expressions], page 29,
the Q language also provides a collection of predefined functions which cover a variety of
elementary operations. The built-in functions can be divided into seven major groups,
arithmetic and numeric functions, string functions, conversion functions, I/O functions,
exception handling functions, and miscellaneous functions. We will describe each of these
in turn.

10.1 Arithmetic Functions

The Q language provides two functions for simple “arithmetic” on enumeration types
(cf. Chapter 8 [Types], page 61):

succ X successor function

pred X predecessor function

As already discussed in Section 8.2 [Built-In and Enumeration Types], page 63, these
function produce the successor and predecessor of a given constant in an enumeration type
(including the built-in Char type). Note that the builtin definitions of these operations
only apply to enumeration types. However, it is an easy matter to extend them to integers
accordingly, and the standard library script stdlib.q actually contains such definitions, cf.
Section 11.1 [Standard Functions], page 94.

Two additional functions are provided for integer arithmetic, shl and shr, which are
used to shift the bits of an integer value a given number of bit positions to the left and
right, respectively:

shl N COUNT
shift N COUNT bits to the left

shr N COUNT
shift N COUNT bits to the right

If the COUNT argument is negative, then the opposite shift by -COUNT bits is performed,
i.e., shl X COUNT = shr X (-COUNT).

These operations provide the fastest possible way to multiply an integer with, and divide
it by, a power of two. More precisely, if X is an arbitrary and N a nonnegative integer, then
shl X N resp. shr X N is the same as X*pow2 N resp. X div pow2 N, where pow2 N denotes
the Nth power of 2, as an integer. We remark that in contrast to bit shifts on fixed size
machine integers, there is no “loss” of most significant bits, because Q integers have arbitrary
precision; hence the results obtained with bit shifting are always “arithmetically correct”.

The bitwise logical operations provide a means to implement sets of nonnegative integers
in a fairly efficient manner. As usual, such “bitsets” are obtained by turning on exactly
those bits whose positions are the members of the set. Thus, 0 encodes the empty set, and
shl 1 I the set consisting of the single member I. You then employ or as set union, and as
set intersection, and not as set complement. Set difference can be implemented by taking
the intersection with the complement set.
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For convenience, you might wish to define yourself a bit function as follows:

bit = shl 1;

Then you can test for membership using an expression like X and bit I which returns
nonzero (namely bit I itself) iff I is in the set. You can also build a set from its members
by or’ing the corresponding bit values, e.g.: bit 1 or bit 4 or bit 39.

A final remark: Because Q integers have arbitrary precision, bitsets do not have an a
priory size restriction in Q (in fact, they can even be infinite, as negative integers are used
to encode the complements of the finite bitsets). However, you should note that a finite
bitset (a.k.a. a nonnegative integer) needs space proprotional to the set’s largest member,
and hence this method will be practical only if the potential set members are within a
reasonable range.

10.2 Numeric Functions

exp X exponential function

ln X natural logarithm

sqrt X square root

sin X sine

cos X cosine

atan X arcus tangent

atan2 Y X arcus tangent of Y/X

random random number

seed N initialize random number generator

This group includes the usual trigonometric and exponential functions, logarithms and
square root. All these functions take both integer and floating point arguments. They
return a floating point number. The atan2 function is like atan, but takes two arguments
and computes the arcus tangent of their ratio. In difference to atan, it takes into account
the signs of both arguments to determine the quadrant of the result.

Besides this, there is a parameterless function random which returns a 32 bit pseudo
random integer in the range 0..2^32-1. To obtain a random 32 bit floating point value in
the range [0,1], you simply divide random by 0xffffffff. The current implementation uses the
“Mersenne Twister”, a fast uniform random number generator with a period of 2^19937-1,
written by Makoto Matsumoto and Takuji Nishimura. The generator is initialized automat-
ically with a seed taken from the system clock at the time the interpreter starts up. The
seed function allows to initialize the generator explicitly with a given nonnegative integer
seed; this is useful if it is necessary to reproduce random sequences. Note that only the
least significant 31 bits of the given seed value are actually used; these 31 bits are padded
with a constant 1 bit, since the generator works best with odd seed values.
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10.3 String/List/Tuple Functions

This group provides some additional operations on sequences (strings, lists and tuples).

sub Xs I J
extract the subsequence consisting of members I thru J of a string, list or tuple
Xs

substr S K L
return substring of length L at position K in S

pos S1 S position of substring S1 in S

The sub function returns a subsequence (also called a “slice”) of a string, list or tuple,
given by the zero-based index values I and J. For instance:

==> sub "abcde" 2 3
"cd"

==> sub [a,b,c,d,e] 2 3
[c,d]

==> sub (a,b,c,d,e) 2 3
(c,d)

The sub function handles all combinations of index arguments in a reasonable manner.
Thus, if J < I or I >= #Xs then an empty sequence is returned, I = 0 is assumed if I < 0,
and the remainder of the sequence is returned if J >= #Xs.

Besides sub, there are two additional functions operating exclusively on strings. The
substr function returns a substring of a string with a given length at a given position.
This function is provided for backward compatibility; note that substr S K L is equivalent
to sub S K (K+L-1). The pos function returns the position of a substring in a string (-1 if
there is no occurrence of the given substring). For instance:

==> pos "cd" "abcde"
2

==> substr "abcde" 2 2
"cd"

10.4 Conversion Functions

This group consists of functions for converting between different kinds of objects:

trunc X truncate floating point to integer value

round X round floating point to nearest integer value

float X convert integer to floating point number

int X integer part of floating point number

frac X fraction part of floating point number
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hash X 32 bit hash code of an expression

ord X ordinal number of enumeration type member (or character)

chr N character with given ordinal number

list Xs convert a tuple to a list

tuple Xs convert a list to a tuple

str X convert expression to string

strq X convert quoted expression to string

val S convert string to expression

valq S convert string to quoted expression

The ord and chr functions convert between characters and their ordinal numbers in
the local character set. The ord function can also be used to compute the ordinal number
of a member of an arbitrary enumeration type, see Section 8.2 [Built-In and Enumeration
Types], page 63.

The hash function returns a nonnegative 32 bit hash code for an arbitrary expression.
The only guarantee is that syntactically equal objects are mapped into the same hash code.
This function is useful, e.g., for implementing hashed dictionaries which map arbitrary
keys to corresponding values, see Section 11.6.6 [Hashed Dictionaries], page 102 for an
application.

The str function converts its argument expression to the corresponding print represen-
tation conforming to the Q expression syntax, which is returned as a string; the argument
is evaluated as usual. The strq function is similar, but converts a quoted expression (cf.
Section 9.4 [The Quote Operator], page 73). For instance:

str (1+1) ⇒ "2"
strq ’(1+1) ⇒ "1+1"

The val/valq functions are the counterpart of str and strq; they convert a string
containing the print representation of an expression back to an expression. In the case of
val, the expression is evaluated, while valq returns the parsed expression as it is, protected
with the quote operator:

val "1+1" ⇒ 2
valq "1+1" ⇒ ’(1+1)

These functions require that the contents of their string arguments conform to the Q
expression syntax. In case of a syntax error, the built-in rules fail.

All expression conversion routines use the global scope, i.e., the namespace of the main
script, for the purpose of converting identifiers, just like the interpreter itself. Thus these
functions work consistently in a given main script no matter which module they are invoked
from. However, this also means that the precise results may depend on which main script
is currently loaded. Note that this only affects the parsing and unparsing of identifiers. For
instance, if a function symbol foo in module bar is visible in the main scope then it will be
unparsed simply as "foo", otherwise the qualified form "bar::foo" is used.
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A word of caution: Having a “universal” string representation of Q expressions is very
useful to facilitate interaction with the user, but you should note that the expression con-
version routines are so powerful that they can easily be abused for rather questionable
purposes. For instance, the val function gives you a “backdoor” to access any function or
variable symbol in a script, even private symbols in other modules. The only way around
this would have been to severely restrict the functionality of the conversion routines, which
would have made them much less useful. Thus it is in your responsibility to use these
functions in an “orderly” manner.

10.5 I/O Functions

This group provides functions for handling input/output from/to the terminal or a text
file. These functions implement operations with side-effects; the side-effects consist in mod-
ifying the terminal display or a file.

fopen NAME MODE
open file NAME in mode MODE

popen CMD MODE
open pipe CMD in mode MODE

fclose F close a file

read, fread F
read an expression from the terminal or a file

readq, freadq F
read a quoted expression from the terminal or a file

readc, freadc F
read a character from the terminal or a file

reads, freads F
read a string from the terminal or a file

write X, fwrite F X
write an expression to the terminal or a file

writeq X, fwriteq F X
write a quoted expression to the terminal or a file

writec C, fwritec F C
write a character to the terminal or a file

writes S, fwrites F S
write a string to the terminal or a file

eof, feof F
check for end-of-file on the terminal or a file

flush, fflush F
flush output buffer on the terminal or a file
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10.5.1 Terminal I/O

Input from the terminal (i.e., the standard input device) is done through the param-
eterless functions read, readq, readc and reads which read and return, respectively, an
expression, a quoted expression, a single character, and a string. Terminal input is line-
buffered which means that you must type an entire input line before anything is returned
by these functions.

The reads function obtains one line of input, strips off the trailing newline character,
and returns the result as a string. For instance (here and in the following, <CR> means that
you hit the carriage return key to terminate the input line, rather than actually typing the
string "<CR>"):

==> reads
one line of text<CR>
"one line of text"

The readc function allows you to read input character by character; at the end of a line
the newline character "\n" is returned:

==> readc
<CR>
"\n"

The read and readq functions read one line from the input, as with reads, and convert
the resulting string to an expression, as with val and valq, respectively. For instance:

==> read
1+1<CR>
2

==> readq
1+1<CR>
’(1+1)

The corresponding functions for producing output on the terminal (the standard output
device) are named write, writeq, writec and writes. They print an expression, a quoted
expression, a character and a string, respectively. These functions take one argument, the
object to be printed, and return the empty tuple (). For instance:

==> writec "x"
x()

==> writes "one line of text\n"
one line of text
()

==> write (1+1)
2()

==> writeq ’(1+1)
1+1()
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(Output operations are invoked solely for their side-effects. However, any Q expression
must have a value, and since there is no other meaningful value to return, the write
functions return (). In the above examples, this value is output by the interpreter after the
printed text, which explains, e.g., the x() in response to writec "x".)

It is common practice to combine these operations by means of the || operator in order
to implement dialogs such as the following prompt/input interaction:

==> writes "Input: " || reads
Input: one line of text<CR>
"one line of text"

You will also often encounter several output operations for interpolating data into text
fragments:

==> writes "The result is " || writeq ’(1+1) || writes ".\n"
The result is 1+1.
()

The eof function allows you to check for end-of-file on the terminal. Actually, this causes
another line of input to be read from the terminal if no input is currently available, to see
whether the end of the input has been reached. Most operating systems allow you to type
a special character to indicate end-of-file, such as the Ctl-D character on the UNIX system:

==> eof
<Ctl-D>
true

The flush function writes any pending output to the terminal. It is rarely necessary to
call this function explicitly; see also the discussion of the fflush function in Section 10.5.2
[File I/O], page 83.

10.5.2 File I/O

File input and output is implemented by the functions fread, freadq, freadc, freads,
fwrite, fwriteq, fwritec and fwrites. There also is an feof function which allows to
check whether the end of a file has been reached, and an fflush function which flushes the
output buffer of a file. These operations are analogous to their terminal equivalents, but
take an additional first argument, a file object. A file object is a special kind of elementary
object in the Q language which is returned by the built-in fopen function.

The fopen function takes two string arguments, the name of the file to be opened (which
is the name under which the file is known by the operating system), and the mode in which
the file is to be opened. The mode string "r" means to open an existing file for reading, "w"
to open a new file for writing (existing files are truncated to zero size), and "a" to create a
new or append to an existing file. You can also add the letter "b" at the end of the mode
string to indicate that the file should be opened as a binary file. This only has the effect
to suppress the LF/CR-LF conversion on MS-DOS/Windows systems, which is essential if
you read/write binary data from/to the file. On UNIX systems this flag is ignored.

For instance, a function checking whether a file exists and is accessible for reading can
be implemented as follows:
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exists NAME = isfile (fopen NAME "r");
isfile X:File = true;
isfile X = false otherwise;

Files are closed automatically when the corresponding file objects are no longer accessible
in a computation. E.g., with the above definition of the exists function, if you invoke
this function as exists "myfile", then the file object returned by fopen "myfile" "r"
(assuming that the file actually exists) will become inaccessible as soon as it has been
processed by the isfile function, at which point it gets closed. Similarly, if you assign a
file to a variable in the interpreter,

==> def F = fopen "myfile" "r"

the file will be closed as soon as you undefine the variable:

==> undef F

Occasionally, it might be necessary to close a file explicitly, e.g., a file object might still
be accessible, but you want to close it before you do some other processing. In this case
you can invoke the fclose function on the file:

==> def F = fopen "myfile" "r"; fclose F
()

After closing a file, the file object still exists, but all further I/O operations on it (in-
cluding fclose itself) will fail:

==> freads F; fclose F
freads <<File>>
fclose <<File>>

(Note the notation <<File>> which represents a file object, since file objects have no
printable representation. This syntax is also used by the expression output and unparsing
functions, write, str etc. Of course, such objects cannot be reparsed using read, val, etc.)

We remark that the standard input and output devices used by the terminal I/O func-
tions (the readx and writex functions, see Section 10.5.1 [Terminal I/O], page 82) are
actually special instances of the file I/O functions, which read from standard input and
write to standard output. The standard input and output devices are implemented by the
interpreter as predefined file objects which are assigned to the INPUT and OUTPUT variables,
see Section B.2 [Command Language], page 181. Thus, for instance, reads and writes X
are equivalent to freads INPUT and fwrites OUTPUT X, respectively.

As an example for the use of file I/O, here’s a tail-recursive function which copies the
contents of one file opened in read mode to another file opened in write or append mode:

fcopy F G = () if feof F;
= fwritec G (freadc F) || fcopy F G otherwise;

Note that file objects are indeed modified by input and output operations; at least, the
file pointer is moved accordingly. Otherwise the above definitions would not work. This
also becomes apparent when manipulating files interactively:

==> def F = fopen "xyz" "r"
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==> freads F
"first line in file xyz"

==> freads F
"second line in file xyz"

...

The fflush function is used to write any buffered output to a file. This operation is
only needed when the target file must be updated immediately. For instance, the target
file may actually be a pipe and it may be necessary to get an immediate response from the
program which reads the output at the other end of the pipe (see Section 10.5.3 [Pipes],
page 85). Then you can use the fflush function as follows:

==> fwrites F S
()

==> fflush F // force S to be written to F immediately
()

We remark that if the Q interpreter runs interactively, then it automatically flushes the
standard output files whenever an evaluation is finished, see Section B.1 [Running Compiler
and Interpreter], page 175. And, of course, buffered output is always flushed when a file
is closed. In case you have to flush standard output explicitly, use flush or, equivalently,
fflush OUTPUT. (This should only be necessary if the standard output stream has been
redirected to a disk file or a pipe.)

The interpreter currently does not provide direct support for reading and writing binary
files, except that such files may be interpreted as a stream of bytes represented as charac-
ter values. However, such functionality can easily be implemented using the C language
interface (see Appendix C [C Language Interface], page 191), and in fact there is the clib
standard library module which provides such facilities (see Chapter 12 [Clib], page 119).

10.5.3 Pipes

The popen function is used to create a file object connected to a pipe. The file objects
constructed with popen allow you to pipe data into an operating system command, and
to read the output of such a command from a file. Like fopen, popen takes two string
arguments. The first parameter denotes the command to be executed, and the second
parameter specifies the mode in which the pipe is to be opened. The mode argument must
be either "r" (read from the output of the given command) or "w" (write to the input of the
command), and causes a file object open for reading or writing to be returned, respectively.
The "b" flag may also be used to open the pipe as a binary file, see Section 10.5.2 [File
I/O], page 83.

Input pipes are typically employed for retrieving information from the host operating
system. For instance, on UNIX systems we can use the ls command to obtain a list
of filenames matching a given wildcard specification. A corresponding function ls which
returns such a list can be implemented as follows:

ls S:String = freadls (popen ("ls "++S) "r");
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freadls F:File = [] if feof F;
= [freads F|freadls F] otherwise;

As an example for an output pipe, the following function more pipes a file through the
more program which displays the file page by page:

more F:File = fcopy F (popen "more" "w");

(The definition of fcopy is as in Section 10.5.2 [File I/O], page 83.)

Just like ordinary files, pipes are closed automatically when the corresponding file object
is no longer accessible, or explicitly by an invokation of the fclose function. Furthermore,
the interpreter waits for the command started with popen to finish when closing the pipe.

Output pipes are a convenient means to implement specialized output devices in the Q
language. For instance, the standard library script graphics.q writes its graphics output
to a file GRAPHICS which is often defined as a pipe to a PostScript previewer like, e.g.,
Ghostscript:

def GRAPHICS = popen "gs -q -" "w";

10.6 Exception Handling

As already mentioned, the Q language only knows a few “hard” runtime error conditions
a.k.a. exceptions such as stack or memory overflow. However, “soft” exceptions can also
be generated and handled in any desired manner. The following functions are used to deal
with all kinds of exceptions during expression evaluation:

halt halt evaluation

quit exit the Q interpreter

break invoke the debugger

fail abort the current rule

catch F X handle an exception

throw X raise an exception

trap ACT SIG
trap signals

The halt function never returns a result, but raises an exception which normally causes
the evaluation process to be aborted immediately. This last resort is commonly used in
case of a fatal error condition. The quit function is like halt, but also causes exit from
the interpreter and returns you to the operating system shell; this operation is often used
interactively to terminate a session with the interpreter. (Note that in a multithreaded
script, see Section 12.12 [POSIX Threads], page 147, quit only terminates the program
when it is invoked from the main thread. In other threads it just acts like halt.)

If the break flag is on (see Appendix D [Debugging], page 199), the break function
interrupts an evaluation and invokes the symbolic debugger built into the Q interpreter,
just as if the user typed Ctl-C. This operation allows you to set breakpoints in a script.
For instance,
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foo X = break || bar X;

causes the debugger to be invoked as soon as the rule is executed. If the break flag is off
then this operation has no effect. In any case, the break function returns ().

The fail function is used to abort the current rule, just like a failing qualifier. The
difference is that fail can be used anywhere in the right-hand side or qualifier of a rule,
and causes the rule to be exited immediately. This allows you to handle complicated error
conditions which occur while a rule is already being executed, and also provides an efficient
method for implementing backtracking algorithms. For instance, here is a quick solution
for the famous “N queens” problem:

queens N = search N 1 1 [];

search N I J P = write P || writes "\n" if I>N;
= search N (I+1) 1 (P++[(I,J)]) || fail if safe (I,J) P;
= search N I (J+1) P if J<N;
= () otherwise;

safe (I1,J1) P = not any (check (I1,J1)) P;

check (I1,J1) (I2,J2)
= (I1=I2) or else (J1=J2) or else
(I1+J1=I2+J2) or else (I1-J1=I2-J2);

This algorithm prints out all valid placements (i.e., lists of (row,column) pairs) of N
queens on an N times N board. Note the use of fail in the second equation for the search
function, which causes the rule to fail after the current placement has been tried, after
which evaluation proceeds with the third rule which places the queen into the next column.
This turns the definition into a backtracking algorithm. The safe function verifies that a
placement (I1,J1) does not put the queen in check with any of the other queens which
have already been placed.

The catch function allows you to handle both “hard exceptions” which are raised when
the interpreter encounters one of the runtime error conditions discussed in Section 7.11
[Error Handling], page 59, and “soft exceptions” which are raised by the functions halt and
quit already explained above, and the throw function which is discussed below. Moreover,
the interpreter also handles certain signals sent to it, e.g., via the kill(2) system call, by
raising appropriate exceptions. In the current implementation, by default only the signals
SIGINT (“break”), SIGTERM (“terminate”) and SIGHUP (“hangup”) are handled; the latter
two are both treated as termination requests, like a call to the quit function. Signal handlers
can also be installed by the running script using the trap function discussed below.

Both arguments of catch are special. The catch function first evaluates its second
argument, the target expression and, if all is well, returns the value of that expression.
Otherwise, if any exception was raised during the evaluation of the target expression, it
evaluates the first argument (the exception handler), applies it to the value of the exception,
and returns the result computed by the exception handler.
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In the case of a runtime error condition and the exceptions raised with the halt and
quit functions, the exception value is of the form syserr N where N is one of the integer
error codes listed below:

1: Break: break signal, user typed Ctl-C.
2: Halt: invokation of the halt function, or request to halt evaluation from the debug-
ger.
3: Quit: termination signal, invokation of the quit function, or request to exit the
interpreter from the debugger.
4: Memory overflow : the attempt to allocate memory for the stack or a new expression
on the heap fails.
5, 6: Stack overflow : the attempt to push an expression on the stack, or the activation
of a rule fails because the stack size limit has been reached (see the comments on
memory management in Section B.1 [Running Compiler and Interpreter], page 175). 5
signals an expression stack overflow, 6 an overflow of the rule stack.
7: Symbol table overflow : the attempt to create a new variable symbol fails.
8: Conditional error: the qualifying condition of a rule does not evaluate to a truth
value.
9: External function error: an external function (see Appendix C [C Language Inter-
face], page 191) signals an error condition.

Let’s try this by forcing a stack overflow condition:

==> iter 100000000 (+) 1
! Stack overflow
>>> iter 100000000 (+) 1

^

==> catch exception (iter 100000000 (+) 1)
exception (syserr 5)

The syserr constructor belongs to the built-in SysException type, which in turn is a
subtype of Exception. These types may be thought of as being predefined as follows:

public type Exception;
public type SysException : Exception = const syserr N;

User-defined exceptions can be generated with throw. The throw function raises an
exception whose value is given by its single (non-special) argument. For instance:

X/0 = throw ’(X/0);
exception X = writes "Exception: " || write X || writes "\n";

With these definitions we have:

==> catch exception (17+4*3/2)
23.0

==> catch exception (17+4*3/0)
Exception: ’(12/0)
()
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==> 17+4*3/0
! Exception
’(12/0)
>>> 17+4*3/0

^

Note that if an exception raised with throw is not handled with a corresponding catch,
then the interpreter aborts the evaluation and prints an error message (and it will also
invoke the debugger to report the rule which generated the exception, if break is on).

The catch and throw functions can also be used to implement non-local value returns.
For instance, here is a variation of the N queens function which returns the first solution as
soon as it has been found during backtracking:

queens1 N = catch id (search1 N 1 1 []);

search1 N I J P = throw P if I>N;
= search1 N (I+1) 1 (P++[(I,J)]) || fail if safe (I,J) P;
= search1 N I (J+1) P if J<N;
= () otherwise;

Here, the “exception handler” is just the identity function id, as defined by the standard
library, see Section 11.1 [Standard Functions], page 94.

Another neat programming trick is the following which makes a rule fail if an exception
occurs during evaluation of the right-hand side:

foo X = catch fail (bar X);

This works because the handler argument, which is special, is evaluated only if an ex-
ception is actually encountered during evaluation of the target expression. Otherwise, foo
X will just return the value of bar X.

Lisp and C++ programmers will probably miss an additional parameter which restricts
the kind of exceptions handled with catch. You can implement this easily yourself by check-
ing the exception value in your handler function, and “throw on” an unknown exception to
the next enclosing catch:

type MyException : Exception = special const div_by_zero X;

foo X = catch myexception (1/X);

X/0 = throw (div_by_zero (X/0));

myexception X:MyException
= writes "myexception: " || write X ||
writes "\n" || halt;

myexception X = throw X otherwise;

Note how we implemented the div_by_zero exception using our own Exception subtype
MyException. This method of structuring error exceptions is recommended because it
makes it easier to spot the source of an exception. It also enables us to use a type guard
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(cf. Chapter 8 [Types], page 61) in order to check for specific exception types, rather than
having to discriminate over different exception patterns.

Finally, the trap function allows you to have exceptions be generated when a signal
arrives. The trap function takes two arguments, ACT and SIG, denoting the action to be
performed and the number of the signal to be trapped. It returns the previous action
associated with the signal. ACT must be an integer value. If it is positive then the signal
raises an exception of the form syserr (-SIG); if it is negative then the signal is completely
ignored; and if it is zero then the interpreter reverts to the default handling of the signal.
You can also use trap to redefine the default handling of the break and termination signals.
To allow signals to be caught reliably, further signals are “blocked” (i.e., they are queued
for later delivery) while catch evaluates an exception handler. For instance, here is a little
script which sets up some signal handlers and keeps on printing the trapped signals until it
either gets terminated with kill -9 or the timed wait with the sleep function times out.
(The sleep function is described below. The symbolic signal constants and the getpid and
printf function are provided by the clib module, see Chapter 12 [Clib], page 119.)

test = do (trap 1) [SIGINT,SIGTSTP,SIGTERM,SIGHUP,SIGQUIT] ||
printf "I’m running as pid %d, try to kill me!\n" getpid ||
loop;

loop = flush || catch sig (sleep 100);

sig (syserr K) = printf "Hey, I got signal %d.\n" (-K) || loop;

10.7 Miscellaneous Functions

This group consists of some special operations which do not fit into any of the other
groups treated above.

version, sysinfo
determine version/system information

which S determine absolute pathname of file on Q library path

time get the system time

sleep X pause for some time

isspecial X
predicate checking whether argument is a special form

isconst X predicate checking whether argument is a constant

isfun X, isvar X
predicates checking whether argument is a function or a variable symbol, re-
spectively

isdef X predicate checking whether the variable X has been assigned a value

flip F flip arguments of a binary function
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The version and sysinfo functions are useful when writing code which depends on a
particular version of the Q interpreter or a machine/operating system type. They return
a string describing the Q interpreter version and the host system on which it is installed,
respectively.

The which function performs a search for the given filename on the Q library path. If the
file is found then the absolute pathname is returned; otherwise the function fails. The path
information is useful, e.g., if a script installed on the library path has to locate additional
data files. If the data files are stored with the script (say, in a subdirectory foo of the
library directory for a script named foo.q) then you can determine the path to these files
simply as follows:

prefix NAME = substr ANAME 0 (#ANAME-2) where ANAME = which NAME;

For instance, if /usr/share/q/lib/foo.q is the absolute name of the installed script
then prefix "foo" returns "/usr/share/q/lib/foo".

Two functions are provided for timing purposes. The time function returns, as a floating
point value, the time in seconds since the “epoch” (00:00:00 UTC, January 1, 1970). The
sleep function suspends evaluation for the given time (integer or floating point value, again
in seconds). Be warned that the actual resolution of these functions depends on the timing
routines available on your system, and even if a decent resolution is provided, the accuracy
of results will depend on various factors such as system load.

The isspecial, isconst, isfun, isvar and isdef predicates are all special forms check-
ing whether their single argument has a certain property. The isspecial function allows
you to determine whether its argument is a special form which will receive its next argu-
ment unevaluated. The isconst operation checks whether its argument is a constant, i.e.,
a constant belonging to any of the built-in types, a variable or function symbol declared
with const, or an application whose head element is such a constant. The isfun and
isvar predicates are used to check whether an expression is a function symbol (built-in
or defined by the loaded script, can also be a constant symbol), or a free variable symbol,
respectively. The isdef function can be used to check whether its argument (a variable)
has been assigned a value using def.

The flip function exchanges arguments of a (binary) function, as if it was defined by
the following equation:

flip F X Y = F Y X;

This function is used internally to implement operator sections with missing left argument.
E.g., (+1) is nothing but syntactic sugar for flip (+) 1. You can apply flip to other,
user-defined functions as well; thus, flip foo X denotes the function which maps Y to foo
Y X.

In order to handle special forms like, e.g., (or else) correctly, flip automagically
adjusts to the argument pattern of its first argument. That is, if the function given as
the first argument (which is always evaluated) has a special first (resp. second) argument,
then flip’s second (resp. first) argument will be special as well.
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11 The Standard Library

This chapter gives an overview of the data types and operations provided by the standard
library modules supplied with the Q programming system. The library currently consists
of the following scripts:

assert.q print diagnostics

clib.q various system functions (external module)

comp.q comparison of lists and tuples

complex.q
complex numbers

cond.q conditional expressions

error.q print error messages

graphics.q
PostScript graphics interface

lambda.q an implementation of the lambda calculus

list.q list comprehensions

math.q mathematical functions

prelude.q
standard prelude

sort.q algorithms to sort a list

stddecl.q
shared declarations of the container data structures (cf. stdtypes.q)

stdlib.q a collection of common standard functions

stdtypes.q
a collection of efficient container data structures

stream.q an implementation of streams

string.q additional string functions

typec.q type-checking predicates

The prelude.q script implements the standard prelude, which loads the entire collection
(except graphics.q which must always be imported explicitly).

The stdlib.q script has those operations which will probably be used most frequently
by the average programmer; it contains a lot of additional list processing functions and
other useful stuff mostly adopted from [Bird/Wadler 1988]. This module is also included
by many other library scripts. Historically, it was the first script written for the standard
library.

The stdtypes.q script simply includes all modules which implement common container
data structures; currently these are array.q, bag.q, dict.q, hdict.q, heap.q and set.q,
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see Section 11.6 [Standard Types], page 98. Some declarations shared by these modules are
in the stddecls.q script.

The clib.q module gives access to various useful “system” functions from the C library,
including C-style formatted I/O, binary file I/O, process and thread management and regu-
lar expression routines. The operations of this module are mostly written in C, using the C
language interface discussed in Appendix C [C Language Interface], page 191. This module
is described in its own chapter, see Chapter 12 [Clib], page 119.

Besides this, the standard distribution of the Q programming system also includes some
additional modules for interfacing to GNU dbm, ODBC, Octave, Tcl/Tk, GGI (a portable
graphics interface) and IBM’s Data Explorer visualization software. Preliminary docu-
mentation for these modules can be found in the etc subdirectory of your Q installation
directory (usually in /usr/share/q or /usr/local/share/q).

11.1 Standard Functions

The stdlib.q script provides frequently used list operations and other stuff mostly
adopted from [Bird/Wadler 1988].

abs X absolute value of X

all P Xs verify that each element of the list Xs satisfies the predicate P

any P Xs verify that the list Xs contains an element satisfying predicate P

append Xs Y
append a value Y to the list or tuple Xs

apply X Y apply function X to argument Y

cat Xs concatenate a list of lists

compose X Y
function composition: compose X Y Z ⇒ X (Y Z)

cons X Xs prepend an element to a list or a tuple

cst X constant-valued function: cst X Y ⇒ X

do F Xs apply a function F to each member of a list Xs, return ()

drop N Xs remove the first N elements from the list Xs

dropwhile P Xs
remove elements from the beginning of Xs while the predicate P is satisfied

eq X Y syntactic equality (cf. Section 7.2 [Non-Linear Equations], page 45)

filter P Xs
filter a list with a predicate

foldl F A Xs
fold-left

foldl1 F Xs
fold-left over nonempty lists
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foldr F A Xs
fold-right

foldr1 F Xs
fold-right over nonempty lists

fst Xs return first element of a tuple

hd Xs return the head element of a list

hds Xs return the list of all head elements in a list of lists

id the identity function: id X ⇒ X

init Xs return list Xs without its last element

iter N F A
generate the list of the first N values A, F A, F (F A), . . .

last Xs return the last element of a list

map F Xs apply function F to each member of a list

max X Y maximum of two values

min X Y minimum of two values

mklist X N
create a list of N X’s

neg P negate a predicate

neq X Y syntactic inequality

null Xs check whether a string, list or tuple is empty ([] resp. ())

nums N M generate a list of numbers in a given range

numsby K N M
generate a list of numbers with a given step size

pair X Y construct a pair

pop Xs remove the head element from a list or a tuple

prd Xs product of a list of numbers

push Xs X prepend an element to a list or a tuple (cons with arguments reversed)

reverse Xs
reverse a list

scan F A Xs
apply foldl to every initial part of a list

scan1 F Xs
apply foldl1 to every nonempty initial part of a list

sgn X sign of a number

snd Xs return second element of a tuple
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sum Xs sum of a list of numbers

take N Xs select the first N elements from the list Xs

takewhile P Xs
select elements from the beginning of Xs while the predicate P is satisfied

tl Xs remove the head element from a list

tls Xs return a list of lists with all head elements removed

top Xs return the head element from a list or a tuple

transpose Xs
transpose a list of lists

trd Xs return third element of a tuple

triple X Y Z
construct a triple

tuplecat Xs
concatenate a list of tuples

until P F X
repeat applying F to X until P is satisfied

unzip Xs transform a list of pairs into a pair of lists

unzip3 Xs unzip with triples

while P F A
list repeated applications of F to A while P is satisfied

zip Xs Ys take two lists and return a list of corresponding pairs

zip3 Xs Ys Zs
zip with three lists

zipwith F Xs Ys
take two lists and map a binary function to corresponding elements

zipwith3 F Xs Ys Zs
zipwith with three lists

The stdlib.q script also overloads succ and pred with the usual successor and prede-
cessor functions on integers. For instance, succ 5 = 6 and pred 0 = -1.

11.2 String Functions

The string.q script provides a collection of additional string functions. Currently the
following operations are implemented:

chars S return the list of individual characters in S

join DELIM Xs
concatenate a list of strings, interpolating the given DELIM string between each
pair of consecutive strings in the list
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split DELIM S
split a string into a list of substrings delimited by characters in the given DELIM
string

strcat Xs concatenate a list of strings

11.3 Comparison Functions

The comp.q script overloads the =, <>, <, >, <= and >= operators with rules for deciding
equality and inequality of lists and tuples, and rules for ordering lists lexicographically. That
is, both tuples and lists can be compared with = and <>, which is done by checking that the
operands are of the same size and recursively comparing all members of the operands. Lists
can also be compared lexicographically by recursively comparing the list members; the first
unequal members decide the comparison. This works just like the lexicographic comparison
of strings. Thus, e.g., [1,2] is considered to be less than both [1,3] and [1,2,1], but
more than [1,1,3] or [0,5].

11.4 Type-Checking Predicates

The typec.q script contains a collection of predicates which check whether an expression
is of a given type. The following operations are provided:

isbool X check for truth values

ischar X check for single character strings

isexcept X
check for Exception values (cf. Section 10.6 [Exception Handling], page 86)

isfile X check for file objects

isfloat X check for floating point numbers

isint X check for integers

islist X check for lists

isnum X check for numbers

isstr X check for strings

issym X check for function and variable symbols (special form)

istuple X check for tuples

11.5 Sorting Algorithms

The sort.q script provides mergesort and quicksort algorithms for sorting a list using
a given order predicate:

msort P Xs
mergesort algorithm
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qsort P Xs
quicksort algorithm

The mergesort algorithm is more involved than quicksort, but may run much faster if
input lists are large enough and are already partially sorted. Both algorithms take an order
predicate as their first argument, which makes it possible to sort lists using different criteria.
The order predicate must be a function accepting two arguments, and must return true iff
the first argument is strictly less than the second. For instance, to sort a list in ascending
order, you could say:

==> qsort (<) [1,5,3,2,4]
[1,2,3,4,5]

By reversing the order predicate, the list is sorted in descending order:

==> qsort (>) [1,5,3,2,4]
[5,4,3,2,1]

Custom order predicates also allow you to sort a list according to different sort keys. For
instance, the following example shows how to sort a list of pairs using the first component
of each pair as the sort key (see Section 11.7 [Lambda Calculus], page 103, for a description
of the lambda function):

==> def L = [(1,2),(5,1),(3,3),(1,1),(4,5)]

==> def le1 = lambda X (lambda Y (fst X < fst Y))

==> qsort le1 L
[(1,2),(1,1),(3,3),(4,5),(5,1)]

Both algorithms provided by this module are “stable”, i.e., they preserve the relative
order of list elements with “equal” sort keys. This is important when successive sorts are
used to order elements according to different criteria. For instance:

==> def le2 = lambda X (lambda Y (snd X < snd Y))

==> qsort le2 L
[(5,1),(1,1),(1,2),(3,3),(4,5)]

==> qsort le1 _
[(1,1),(1,2),(3,3),(4,5),(5,1)]

11.6 Standard Types

The stdtypes.q script implements a collection of efficient container data structures,
which currently comprises arrays, heaps (priority queues), ordered sets and bags, and (or-
dered as well as hashed) dictionaries. The different data types are actually implemented in
the scripts array.q, bag.q, dict.q, hdict.q, heap.q and set.q. Many operations of these
modules are overloaded; the declarations of these operations can be found in the stddecl.q
script which is included by the different modules.
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All data structures support equality checking with = and <>, as well as the operation #
to determine the size of an object (number of elements it contains). Furthermore, the set
and bag data structures overload the <, >, <= and >= operators to implement subset/subbag
comparisons and the +, - and * operators to compute the union, difference and intersection
of two sets or bags, respectively.

11.6.1 Arrays

The array.q script provides a zero-based array data structure Array with logarith-
mic access times, implemented as size-balanced binary trees. The following operations are
provided:

array Xs create an array from list Xs

array2 Xs create a two-dimensional array from a list of lists

emptyarray
return the empty array

mkarray X N
create an array consisting of N X’s

mkarray2 X (N,M)
create a two-dimensional array with N rows and M columns

isarray X check whether X is an array

null A check whether A is the empty array

A1 = A2, A1 <> A2
array equality/inequality

#A size of an array

A!I return Ith member of an array

A!(I,J) two-dimensional subscript

members A, list A
list the members of A

members2 A, list2 A
list a two-dimensional array

first A, last A
return the first and last element of an array

rmfirst A, rmlast A
remove the first and last element from an array

insert A X
insert X at the beginning of A

append A X
append X at the end of A
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update A I X
replace the Ith member of A by X

update2 A (I,J) X
update two-dimensional array

11.6.2 Heaps

The heap.q script provides an efficient heap (priority queue) data structure Heap imple-
mented as size-balanced binary trees. Heaps allow quick (i.e., constant-time) access to the
smallest element, and to insert new elements in logarithmic time. The present implementa-
tion does not allow fast random updates of heap members; if such functionality is required,
bags should be used instead (see Section 11.6.4 [Bags], page 101).

Heap members must be ordered by the <= predicate. Multiple instances of the same
element may be stored in a heap; however, the order in which equal elements are retrieved
is not specified.

The following operations are provided:

emptyheap
return the empty heap

heap Xs construct a heap from a list of its members

isheap X determine whether X is a heap

null H check whether H is the empty heap

H1 = H2, H1 <> H2
heap equality/inequality

#H size of a heap

members H, list H
list the members of H in ascending order

first H return the first element of H

rmfirst H remove the first element from H

insert H X
insert X into H

11.6.3 Sets

The set.q script provides an ordered set data structure Set implemented as AVL trees,
and thus guaranteeing logarithmic access times. The following operations are defined in
set.q:

emptyset return the empty set

set Xs create a set from a list of its members

isset X check whether X is a set



Chapter 11: The Standard Library 101

null M check whether M is the empty set

member M X
check whether M contains element X

M1 = M2, M1 <> M2
set equality/inequality

M1 < M2, M1 > M2, M1 <= M2, M1 >= M2
set comparison

M1 + M2, M1 - M2, M1 * M2
set union, difference and intersection

#M size of a set

members M, list M
list the members of M in ascending order

first M, last M
return the first and last member of M

rmfirst M, rmlast M
remove the first and last member from M

insert M X
insert X into M

delete M X
delete X from M

11.6.4 Bags

The bag.q script defines the type Bag as a variant of the set data structure which may
contain multiple instances of the same element. The operations are analogous to those of
the set data structure; see Section 11.6.3 [Sets], page 100. The emptybag function returns
the empty bag, and bag Xs constructs a bag from a list Xs of its members. The isbag
predicate checks whether its argument is a bag.

11.6.5 Dictionaries

The dict.q script supplies an (ordered) dictionary data structure Dict which maps
keys from an ordered set to corresponding values. Like sets and bags, dictionaries are im-
plemented as AVL trees, thus guaranteeing logarithmic access times to individual members
of the dictionary. The following operations are defined in dict.q:

emptydict
return the empty dictionary

dict XYs create a dictionary from a list of key/value pairs

mkdict Y Xs
create a dictionary from a list of keys and an initial value

isdict X check whether X is a dictionary
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null D check whether D is the empty dictionary

member D X
check whether D contains X as a key

D1 = D2, D1 <> D2
dictionary equality/inequality

#D size of a dictionary

D!X return the value Y associated with X in D

members D, list D
list the members (key/value pairs) of D in ascending order by key

keys D list the keys of D in ascending order

vals D list the corresponding values

first D, last D
return the first and last member of D

rmfirst D, rmlast D
remove the first and last member from D

insert D (X,Y)
insert a key/value pair (X,Y) into D; update an existing entry for X if present

delete D X
remove key X from D

update D X Y
same as insert D (X,Y)

11.6.6 Hashed Dictionaries

The hdict.q script implements hashed dictionaries (HDict type), a variation of the Dict
type which uses hashed key values obtained with the builtin hash function. The actual key-
value pairs are stored in “buckets” for each hash value. This kind of data structure is also
known as “hashes” or “associative arrays” in other programming languages.

The main advantage of the HDict type is that key values can be of any type and do not
have to belong to an ordered set. For instance, hdict [(0,1),(foo,2),("bar",3)] is a
legal HDict value which maps the integer 0 to 1, the symbol foo to 2, and the string "bar"
to 3.

There are some other notable differences between the Dict and the HDict type. First
of all, a HDict stores it members in an apparently random order which may depend on the
order in which new entries are added to the dictionary. Hence equality testing for HDicts is
more involved than for Dicts, as the member lists of two “equal” HDicts may be arbitrary
permutations of each other. This also means that the first, rmfirst, last and rmlast
operations do not make much sense with hashed dictionaries and are not supported by the
HDict type. Moreover, key values are always compared syntactically when looking up and
updating entries. Hence, e.g., 0 and 0.0 are different key values in a HDict object, whereas
they are considered to be the same for the Dict type.
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Apart from these differences, the operations of the HDict and Dict types work analo-
gously. The HDict constructors are named emptyhdict, hdict and mkhdict which take the
same arguments as the corresponding Dict constructors, and the ishdict predicate checks
for HDict values.

11.7 Lambda Calculus

The lambda.q script implements the special form lambda which can be used to create
simple function objects “on the fly”. The lambda function is invoked as:

lambda PAT EXPR

The PAT argument can be an arbitary expression which is to be matched against the
actual parameter of the lambda function. If the parameter matches, the value of EXPR is
returned, with the variables in PAT replaced by the corresponding values:

==> def foo = lambda (X,Y) (2*X+Y); foo (2,3)
7

==> def bar = lambda X (lambda Y (2*X+Y)); bar 2 3
7

As indicated, multi-argument functions are created using nested lambda’s. Each variable
is bound by the innermost lambda in which it occurs:

==> lambda X ((lambda X (X*X)) (X+1)) 2
9

Pattern matching is performed by traversing the pattern from left to right, and each
variable is bound as it is matched. Note that, to speed up lambda compilation, it is
not verified that the lambda pattern is “linear”, i.e., contains each variable only once.
Consequently, if a variable occurs more than once in the pattern, the different occurrences
are simply matched independently from each other, and the value bound to the variable is
the actual value which corresponds to the rightmost occurrence:

==> lambda (X,X) (2*X) (99,101)
202

If a pattern match fails, you will see some unevaluated matching “combinators” in the
output. This can be cured by making judicious use of exceptions. (See the section on
lambda internals below for more details on this.)

Lambdas can also be used to substitute variables in special forms like the quote operator:

==> lambda X ’(X+1) (2*3)
’(6+1)

Note that while the pattern and body of a lambda expression are special arguments, the
actual parameter expected by the function created with lambda is non-special. Thus the
value 2*3 in the example above is evaluated before it is substituted for the X variable. If
you want to prevent lambda arguments from being evaluated, you have to protect them
with a special form (e.g., a quote), and extract the value for use in the lambda body using
an appropriate pattern:
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==> lambda ’X ’(X+1) ’(2*3)
’(2*3+1)

The lambda function normally expands nested lambdas in the body of a lambda, s.t.
variables are always bound by the innermost lambda in which they occur. However, this
recursive lambda expansion is inhibited inside the arguments of special forms. This means
that lambda constructs inside a special form are effectively treated as literal expressions:

==> lambda X ’(lambda X (2*X)) 77
’(lambda 77 (2*77))

(Special form detection uses static analysis of the lambda body, hence this only works
with special forms explicitly present in the lambda body. That is, a non-special function
in the lambda body will never be treated as special, even if it reduces to a special form at
runtime.)

A word of caution: The lambda function uses free variable symbols in the pattern to
denote the “lambda variables”. However, for the interpreter a lambda term is just a normal
expression, and hence it will perform its own variable replacement for left-hand side, i.e.,
bound, variables in an equation. Hence, if you have a lambda expression on the right-hand
side of an equation, you should make sure that you only use free variable symbols for the
lambda variables.

Lambda Internals

Chances are that when using lambdas, occasionally you will be confronted with partially
evaluated function objects which consist of a bunch of weird-looking symbols like _A, _HK
etc. A quick look “behind the scenes” will help you understand what’s going on with these
objects.

To improve performance, lambdas are not evaluated directly, but are “compiled” to func-
tion objects consisting of combinators which handle the variable matching and replacement
process. The current implementation is based on the standard combinatorial calculus as
described, e.g., in [Henson 1987], which has been extended to handle pattern matching, and
to perform lambda substitutions in lists and tuples in an efficient manner.

A complete description of the combinatorial calculus is well beyond the scope of this
little section, but here is a brief description of the most important combinators:

_H X, _HL X, _HT X, _HK K X
These are the matching combinators, which match, respectively, applications,
lists, tuples and constants in the argument value.

_A X, _L X, _T X
Combinators for constructing function applications, lists and tuples.

_I, _K K The identity and the constant function.

_S X Y, _B X Y, _C X Y
The “argument dispatching” combinators, which pass on an argument to the X
and Y subfunctions. _S dispatches to both subterms, _B to Y, and _C to X only.
Additional combinators like these, but named with a trailing L or T, are used
to dispatch arguments into lists and tuples.
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All combinators are implemented as special forms, in order to prevent the function body
from being evaluated before the actual lambda parameter is applied. There also is an
additional set just like the one sketched out above (stropped with two leading underscores
instead of one), in which also the lambda argument is protected. These combinators are used
to protect special argument subterms extracted from the lambda argument from premature
evaluation.

For example, here is the combinator expression for the lambda (X,Y) (X*Y) function:

_HT (_B _HT (_B (_B (_HK ())) (*)))

This looks a bit frightening at first sight, but once we strip the matching combinators
and the _B combinator which just dispatches argument values to the correct places, we are
left with nothing but our familiar (*) function.

All combinators are provided as public symbols, so you can invoke them directly, if you
know what you are doing. You can also extend the combinator definitions with additional
rules, e.g., in order to implement exceptions in response to argument mismatches of the
matching combinators. Here are some rules which will do the trick:

_H X Y = throw ’(_H X Y); // bad application
_HL X Y = throw ’(_HL X Y); // bad list
_HT X Y = throw ’(_HT X Y); // bad tuple
_HK K X Y = throw ’(_HK K X Y); // bad constant
// combinators for special arguments
__H X Y = throw ’(__H X Y); // bad application
__HL X Y = throw ’(__HL X Y); // bad list
__HT X Y = throw ’(__HT X Y); // bad tuple
__HK K X Y = throw ’(__HK K X Y); // bad constant

Performance Considerations

The size of a compiled lambda, i.e., the size of the corresponding combinator expression,
is at most quadratic in the size of the lambda expression, and at most linear in the pattern
size. The time needed to actually perform the variable replacements for a given argument
is roughly proportional to the size of the combinator term. This should be efficient enough
for most practical purposes, as long as you avoid huge expressions in the lambda body.

It should also be pointed out that the size of combinator terms explodes combinatorically
with nested lambda expressions, so there also is a practical limit on the parameter count
in multi-argument lambdas. (So-called “supercombinators” might be used to cure this, but
these have not been implemented yet.)

Thus lambdas are most useful for defining simple ad-hoc functions “on the fly”. Don’t
expect any performance miracles. A conventional function definition using equations incurs
much less overhead, since it uses the built-in pattern matching and reduction engine of the
interpreter.
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11.8 List Comprehensions

The list.q script provides the special form listof which allows to specify a list of
values in a manner similar to the way sets are described in mathematics:

listof EXPR CLAUSES

CLAUSES may either be a singleton value or a tuple consisting of binding clauses and
conditional clauses. A binding clause is an expression of the form X in Xs (using the rela-
tional in operator, cf. Section 6.4.3 [Relational Operators], page 35) which specifies that
the (presumably linear) pattern X should be matched in turn to each member of the list
Xs; only values matching the pattern will be extracted, and free variables in the pattern
are bound to their corresponding values using lambda. Binding clauses are considered from
left to right, which means that a clause may refer to any variable introduced in an earlier
binding clause.

Any other expression specifies a conditional clause which must evaluate to a truth value;
only those elements will be listed for which the conditional clause is satisfied.

List comprehensions are best illustrated by an example. The following equations define
an operation which returns the list of all triples (I,J,I+J) s.t. 1<=J<I<=N and I+J is a
prime number.

prime_sum_pairs N = listof (I,J,I+J) (I in nums 1 N,
J in nums 1 (I-1), isprime (I+J));

isprime N = (N>1) and then prime_test N 2;
prime_test N M = true if M*M>N;

= false if N mod M = 0;
= prime_test N (M+1) otherwise;

11.9 Streams

The stream.q script implements streams, a variant of the list data structure with “call
be need” evaluation. Streams can be used to represent infinite sequences of objects, since
the objects in the sequence are only produced as they are required in the course of a
computation.

The Stream type is declared as follows:

public type Stream = special const nil, bin X Xs;

Most list operations are overloaded and work analogously to their list counterparts.
Furthermore, the script incorporates rules for comparing streams using the lexicographic
order, and provides the following additional operations:

isstream X
check whether an object is a stream

stream Xs convert a list to a stream

list Xs convert a stream to a list

numstream N
generate the stream of all numbers >=N
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numstreamby K N
generate a number stream with given step size

mkstream X
generate an infinite stream of X’s

iterate F A
generate the stream of all values A, F A, F (F A), . . .

streamcat Xs
concatenate a stream or list of streams and/or lists (see comments below)

streamof X CLAUSES
stream comprehensions (see discussion below)

Operations like #, all, foldl will of course cause troubles with infinite streams since
it can take them an infinite time to compute the result. The same holds for the foldr
function unless the folded operation is a special form.

The streamcat function (which is analogous to the cat function on lists defined in
stdlib.q) concatenates a stream of streams in a fully lazy manner, i.e., you can concatenate
a (possibly infinite) stream of (possibly infinite) streams. The argument of streamcat can
actually be a list or stream, which consists of any mixture of streams and lists. The result
is always a stream.

The streamof special form works like listof (see Section 11.8 [List Comprehensions],
page 106), except that it accepts both streams and lists, which may contain an arbitrary
collection of stream and list values, and returns a stream instead of a list as the result.
For instance, the following recursive definition is used to generate the stream of all possible
permutations of a given list Xs:

perms [] = stream [[]];
perms Xs = streamof [Y|Ys] (Y in stream Xs,

Ys in perms (filter (neq Y) Xs));

Here is an example for the use of infinite streams. It implements the well-known sieve
of Erathosthenes:

ints N = bin N (ints (N+1));
primes = sieve (ints 2);
sieve (bin X Xs) = bin X (sieve (filter (ndivby X) Xs));
ndivby M N = N mod M <> 0;

A common pitfall with streams is that the size of a recursively defined stream expression
can grow very fast, unless some care is taken. For instance, a Haskell programmer might
be tempted to define the stream of all Fibonacci numbers as follows:

fibs = bin 1 (bin 1 (zipwith (+) fibs (tl fibs)));

However, this definition has a similar defect as the naive definition of the fib function in
Section 7.1 [Equations], page 41, in that fibs invokes itself twice, and hence the tails of this
stream grow exponentially with the number of applied tl operations. Of course this also
means that the time needed to extract the Nth member of the stream grows exponentially
with N. Haskell programmers get away with this only because their compiler applies a
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clever optimization technique. In Q, the right way to define this stream is to work with
a recursively defined stream which keeps track of pairs of consecutive Fibonacci numbers,
like so:

fibs = fibs2 1 1;
fibs2 A B = bin A (fibs2 B (A+B));

11.10 Conditional Expressions

The cond.q script provides some functions for implementing conditional expressions:

ifelse ~P X Y
simple conditional expression (special form)

matchp P ~X
match pattern against expression (special form)

switch CASES
general conditional expression

match X CASES
pattern-matching conditional

The ifelse special form has already been discussed in Section 9.1 [Basic Concepts],
page 69. It returns either X or Y, depending on whether the first argument is true or
false.

A more general conditional expression is also provided, which allows you to discriminate
between an arbitrary number of cases. It has the form

switch (case P1 X1, case P2 X2, ...)

and returns the first value X for which the corresponding condition P evaluates to true. The
case tuple can also contain a default X expression which denotes the default value to be
returned when the preceding cases have failed. If no case matches, and no default clause is
present, switch returns (). The case and default symbols are special constructor symbols
declared as follows:

public special const case X Y, default X;

The matchp predicate returns true if the expression given as the second argument
matches the literal pattern in the first argument, false otherwise.

The match conditional is a specialized form of switch in which the first case argument
of each case is a pattern to be matched against the given expression X. If the expression
matches, the second case argument is evaluated, with the variables in the pattern bound
to the corresponding values using lambda.

Some examples:

fac N = ifelse (N>0) (N*(fac (N-1))) 1;

f X Y Z = switch (case (X>0) (foo X),
case (Y>0) (bar Y),
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default Z);

g X = match X (case (foo Y Z) (Y*Z),
case (bar Y Z) (Y/Z),
default X);

==> fac 41
33452526613163807108170062053440751665152000000000

==> f (-1) 1 0
bar 1

==> g (bar 9 10)
0.9

11.11 Mathematical Functions

The math.q script contains some additional operations on floating point numbers:

asin X, acos X, tan X
additional trigonometric functions

lg X, log X
base 2 and 10 logarithms

sinh X, cosh X, tanh X
hyperbolic functions

asinh X, acosh X, atanh X
inverse hyperbolic functions

11.12 Complex Numbers

The complex.q script implements complex numbers as pairs (X,Y) of integer or floating
point values X and Y. It generalizes the usual arithmetic operations (including exponen-
tiation), sqrt, exp, logarithms, trigonometric and hyperbolic functions accordingly. The
following basic operations are also provided:

iscomplex Z
check whether argument is complex (including ordinary numbers)

abs Z, arg Z
absolute value and argument

re Z, im Z
real and imaginary part

conj Z complex conjugate

All these operations apply to both real and complex numbers. The arg function returns
the polar angle (in radians), thus (abs Z,arg Z) denotes the polar coordinates of a complex
number Z.
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11.13 Graphics

The graphics.q script implements an interface to Adobe’s PostScript language [Adobe
1990]. PostScript is a page description language which has become one of the main standards
in the desktop publishing world. The nice thing about PostScript is that page descriptions
are device-independent – the same page description can be used for different output devices
such as a screen previewer or a laser printer. The graphics.q script allows you to produce
graphics output on any PostScript device. Note that, as already pointed out, this script
does not belong to the set of “standard” scripts included by the prelude, and hence has to
be imported explicitly if you want to use the operations described in the following.

The graphics device is implemented by the GRAPHICS variable, which by default is as-
signed to standard output. This is useful for debugging purposes, but in a real application
you will of course redirect the output to some PostScript file or device, which can be done
by assigning a suitable value to the GRAPHICS variable. Any file object open for writing will
do, however the script also provides the following convenience functions which each return
an output file or pipe which can be used as the value of the GRAPHICS variable:

gsdev pipe to the ghostscript program (see below)

gvdev pipe to ghostview (see below)

lpdev printer device (usually a pipe to lpr(1))

filedev X output file with name X

nulldev the null device (a synonym for filedev "/dev/null", or filedev "nul" under
DOS/Windows)

For instance, you define the graphics device as a pipe to ghostscript as follows:

def GRAPHICS = gsdev;

You can either add this definition to your main script, or enter it directly at the command
prompt of the interpreter (see Section B.2 [Command Language], page 181).

Ghostscript is a popular PostScript previewer available for a wide range of different plat-
forms. Ghostview is an improved X interface for ghostscript. A similar program, GSView,
is also available for the Windows operating system.

Please note that currently only the nulldev and filedev devices are available when run-
ning under DOS or Windows (the remaining devices types are assigned to nulldev), since
GSView currently does not support input from a pipe. To preview your PostScript output
under DOS/Windows, use filedev to set up an output file and then invoke Ghostscript
or GSView manually. For instance (assuming that the gsview32 program is on your DOS
path):

==> def GRAPHICS = filedev "graphics.ps"

==> // output your PostScript graphics here ...

==> !gsview32 graphics.ps
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If output goes to a printer or a file, you will probably need a minimal header which
identifies the file as a PostScript document. To include such a header in the output file, use
the psheader function before invoking any other graphics operation:

==> psheader

You can also set up a custom header and include other DSC and EPSF comments by
means of the ps function; see Section 11.13.8 [DSC and EPSF Comments], page 116, for
details.

In the following we give an overview of the graphics operations in the PostScript lan-
guage, as they are provided by this module, and describe the implemented functions. For
more details about PostScript please refer to [Adobe 1990].

11.13.1 Coordinate System

The PostScript coordinate system has its origin (0,0) in the lower left corner of the
output page or display window, with the positive X and Y axes extending horizontally to
the right and vertically upward, respectively. The default unit length is 1 point which is
1/72 of an inch.

The origin of the coordinate system, as well as the unit lengths and orientation of the X
and Y axes can be changed by means of the translate, scale and rotate operations, cf.
Section 11.13.6 [Graphics State], page 114.

11.13.2 Overview of Graphics Operations

The process of painting a graphics object usually consists of the following three steps:

• Modify graphics parameters such as the text font, the color, or the translation and
scaling of the coordinate axes.

• Construct a path which outlines the shape of the object to be painted.
• Execute the appropriate painting operation to display the object on the output page.

A path is an ordered sequence of straight and curved line segments. The individual
segments may be connected to each other or they may be disconnected. Thus a path may
consist of several connected pieces which are referred to as the subpaths of the path. In
a subpath, each line segment starts at the point where the previous segment ends. The
newpath function is used to begin a new path. A new subpath is obtained by invoking
moveto which specifies the first point in the subpath. Various operations are provided
to add straight and curved line segments to the current subpath. For instance, a path
consisting of three straight line segments may be denoted as follows:

newpath || moveto 0 0 || lineto 1 0 || lineto 1 1 || lineto 0 1

The last point on the current subpath can be connected back to its starting point (usually
the last point specified with moveto) by closing the subpath with the closepath operation.
For instance, a rectangle is specified as follows:

newpath || moveto 0 0 || lineto 1 0 || lineto 1 1 || lineto 0 1 ||
closepath
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Having constructed a path, the stroke function draws the line segments contained in
the path. Alternatively, fill may be used to fill the interior of the path (for this purpose
the entire path should consist of closed subpaths).

The precise appearance of stroked and filled objects on the output page is controlled
by a collection of parameters referred to as the graphics state. Various operations are
provided for changing these parameters. For instance, you can set the linewidth and dash
pattern used by stroke, the color used by the stroke and fill operations, and the scale
and translation of the coordinate axes. The current settings can be saved on a stack using
gsave and restored (popped from the stack) with grestore.

Another important parameter is the current clipping path which specifies the regions
on the page which can be affected by the painting operations. By default, the paintable
area is the whole page. In order to restrict painting to a user-defined region, a path is
constructed as usual, and then the clip function is used to set this path as the clipping
path. Subsequent paint operations will only paint the interior of the clipping path, i.e.,
the region which would have been filled had we applied the fill operation instead of clip
to the constructed path. Multiple applications of clip are accumulative. That is, clip
intersects the current clipping area (as defined by previous invokations of clip) with the
interior of the current path.

The treatment of textual output is somewhat special. It is possible to define a path
consisting of the outlines of the characters in a given text string by means of the charpath
function. More commonly, however, text strings are simply displayed at a given position
which is accomplished by means of the show function. For instance, to display a text string
S at a position (X,Y) on the current page the following expression is used:

moveto X Y || show S

The graphics.q script also provides several operations which deal with a graphics page
as a whole. First of all, showpage emits the current page, and prepares for the next page by
erasing the current page. The copypage operation is like showpage, but keeps the contents
of the current page. This allows you to accumulate the contents of several pages. Both
showpage and copypage are mainly used when output goes to a printer.

Two additional operations are provided for interactive use, when output goes to a display
window. The erasepage function causes the contents of the current page to be erased. The
flushpage operation updates the display, like showpage or copypage, but does not start
a new page. (To improve performance, graphics output under the X window system is
usually performed in larger chunks. The flushpage operation is required to synchronize
the display by flushing any unwritten data.) Note that this operation is not part of the
PostScript standard, but only works with Ghostscript and possibly some similar Postscript
viewers.

If you want to achieve special effects which cannot be implemented in terms of the
operations provided by graphics.q, you can directly invoke PostScript commands by means
of the ps function. Also, you can copy a PostScript file to the graphics device with the
psfile operation. As an example for the ps function, operations to display a string right-
justified or centered at the current position can be implemented as follows:

showright S:String = ps (psstr S++



Chapter 11: The Standard Library 113

" dup stringwidth pop neg 0 rmoveto show\n");
showcenter S:String = ps (psstr S++

" dup stringwidth pop 2 div neg 0 rmoveto show\n");

(The psstr function converts a string to PostScript syntax; see Section 11.13.7 [Miscel-
laneous Operations], page 116.) The ps function is also useful to include DSC and EPSF
comments in your graphics output if this is necessary. See Section 11.13.8 [DSC and EPSF
Comments], page 116, for details.

11.13.3 Path Construction

The graphics.q script defines the following collection of operations to define the current
path used by the painting and clipping operations:

newpath start a new path

closepath
close the current subpath

clippath set the current path to the current clipping path

moveto X Y
absolute move to position (X,Y)

rmoveto DX DY
move relatively by DX units in horizontal and DY units in vertical direction

lineto X Y
straight line segment between the current point and absolute location (X,Y)

rlineto DX DY
straight line segment specified by displacement (DX,DY) with respect to the
current point

curveto X1 Y1 X2 Y2 X3 Y3
Bézier cubic section between the current point and (X3,Y3), using (X1,Y1)
and (X2,Y2) as control points

rcurveto DX1 DY1 DX2 DY2 DX3 DY3
Bézier cubic section, with the points specified as displacements with respect to
the current point

arc X Y R A1 A2
arc of a circle with radius R centered at location (X,Y) starting and ending at
angles A1 and A2 (0<=A1,A2<=360), respectively; if there is a current point, it
is connected by a straight line segment to the first point on the arc

narc X Y R A1 A2
negative arc; the arc is drawn in clockwise rather than in counter-clockwise
direction

arct X1 Y1 X2 Y2 R
arc specified by tangent lines; the center of the arc is located within the inner
angle of the tangents, with the first tangent connecting the current point and
(X1,Y1), and the second tangent connecting (X1,Y1) and (X2,Y2)
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charpath S T
path consisting of the character outlines that would result if the string S where
shown at the current point using show; T is a truth value denoting whether the
path should be used for stroking to draw the character outlines (T = false) or
whether the path should be adjusted for use with fill or clip (T = true)

11.13.4 Painting

The following operations are provided for stroking and filling, and for displaying text:

stroke draw the line segments in the current path

fill, eofill
fill the interior of the current path (any unclosed subpaths of the current path
are closed automatically)

show S paint string S at the current point

The fill function uses the “nonzero winding number” rule for determining which points
lie “inside” the current path, while eofill uses the “even-odd” rule. Please refer to [Adobe
1990] for the details.

11.13.5 Clipping

The following operations are used to determine the current clipping path, as described
in Section 11.13.2 [Overview of Graphics Operations], page 111:

clip, eoclip
intersect the current clipping area with the interior of the current path

The clip and eoclip operations use the same rules for insideness testing as fill and
eofill, respectively, see Section 11.13.4 [Painting], page 114.

11.13.6 Graphics State

As already indicated in Section 11.13.2 [Overview of Graphics Operations], page 111,
the PostScript graphics state is a collection of parameters which control the behavior of the
graphics operations. The graphics.q script provides the following operations to manipulate
these parameters:

gsave save the current graphics state

grestore restore the previously saved graphics state

savematrix
push the current transformation matrix (CTM) on the PostScript stack; the
CTM is manipulated by the translate, scale and rotate operations, see
below

restorematrix
restore the CTM from the stack
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translate TX TY
move the origin of the coordinate system TX units in horizontal and TY units in
vertical direction

scale SX SY
scale the unit lengths of the coordinate axes by SX in horizontal and SY in
vertical direction

rotate A rotate the coordinate system by an angle of 0<=A<=360 degrees

setlinewidth X
set the line width to X units

setlinecap N
set the line cap style (0 = butt caps, 1 = round caps, 2 = projecting square
caps)

setlinejoin N
set the line join style (0 = miter joins, 1 = round joins, 2 = bevel joins)

setdash Xs DX
set the dash pattern (see below)

setgray X set the gray shade (0 = black, 1 = white)

setrgbcolor R G B
set the color in the RGB model (R = red, G = green, B = blue)

sethsbcolor H S B
set the color in the HSB model (H = hue, S = saturation, B = brightness)

setcmykcolor C M Y K
set the color in the CMYK model (C = cyan, M = magenta, Y = yellow, K =
black)

setcolor C
set the color specified by symbolic color value C (see below)

setfont S X
select font S scaled by X units (see below)

The setrgbcolor, sethsbcolor and setcmykcolor functions enable you to select arbi-
trary colors in the RGB, HSB and CMYK model, respectively. A more user-friendly, but
less flexible, routine setcolor is provided which allows colors to be selected from a fixed
set of symbolic constants implemented by the Color type. Please refer to graphics.q for
a list of the possible color values.

The setdash function sets the dash pattern for straight and curved line segments. The
first argument of setdash is a list of length values which alternately specify the lengths of
the “on” and “off” segments of the line (i.e., dashes and gaps between the dashes). This
list is cycled through by the stroke function. For instance, setdash [2,1] 0 specifies the
dash pattern “2 on, 1 off, 2 on, 1 off, . . . ”. If the list is empty (setdash [] 0) stroke
produces solid lines. The second argument of setdash denotes the “phase” of the dash
pattern, which is given by an offset into the pattern. E.g., setdash [2,3] 11 denotes the
pattern “1 on, 3 off, 2 on, 3 off, 2 on, . . . ”.



116 The Q Programming Language

The setfont function takes as its first argument a string denoting a PostScript font
name such as "Times-Roman" or "Helvetica-Oblique". The second argument denotes
the size in units to which the font should be scaled. For instance: setfont "Helvetica"
10. (This function is implemented by a combination of the PostScript operators findfont,
scalefont and setfont.)

11.13.7 Miscellaneous Operations

showpage emit the current page

copypage like showpage, but do not erase the contents of the current page

flushpage
update the display (flush any buffered graphics)

erasepage
erase the contents of the current page

copies N number of copies to be emitted with showpage

psfile NAME
copy a PostScript file to the graphics device

psstr S convert a string to PostScript syntax

psheader output a minimal PostScript header

ps CMD output a PostScript command

The showpage, copypage, flushpage and erasepage functions have already been dis-
cussed in Section 11.13.2 [Overview of Graphics Operations], page 111. The copies opera-
tion determines the number of copies which should be printed when showpage is invoked:

==> copies 4 || showpage

To submit a PostScript file to the graphics device the psfile operation may be used. It
takes one string argument, the name of the file. For instance:

==> psfile "foo.ps"

The ps function is used to directly invoke a PostScript command. Examples can be
found in Section 11.13.2 [Overview of Graphics Operations], page 111. The psstr func-
tion converts a string to PostScript format. It takes care of embedded backslashes and
parentheses. For instance:

==> writes (psstr "(silly\\) example") || writec "\n"
(\(silly\\\) example)
()

The psheader function is used to begin the output file with a minimal header identifying
the file as PostScript; see Section 11.13.8 [DSC and EPSF Comments], page 116.

11.13.8 DSC and EPSF Comments

Appendix G and H of [Adobe 1990] define a standard set of comments which should be
included in PostScript documents to make explicit the document structure, and to allow
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inclusion of PostScript files in other documents. These standards are known as the document
structuring conventions (DSC) and the encapsulated PostScript file (EPSF) format. See
[Adobe 1990] for a detailed discussion of the purpose of these formats.

The graphics.q script currently does not provide any specialized operations for sending
DSC and EPSF comments to the graphics device, with the exception of the psheader
function which outputs a minimum header to make your printer recognize a graphics file as
PostScript. Invoke this function as follows, before calling any other graphics operation:

==> psheader

You can also call the psheader function at initialization time from within a script, using
a line like the following:

def INIT = psheader;

To include other types of DSC and EPSF comments in the graphics output, you have
to specify these comments explicitly using the ps function. For instance, a function writing
out the necessary DSC header comments of an EPS file may be implemented as follows:

/* (X1,Y1) and (X2,Y2) denote the lower left and the upper right corner
of the bounding box, respectively */

epsf_header X1:Num Y1:Num X2:Num Y2:Num
= ps "%!PS-Adobe-3.0 EPSF-3.0\n" ||

ps ("%%BoundingBox: "++join " "
[str X1, str Y1, str X2, str Y2]++"\n");

As indicated, each comment must be terminated by a newline character. Use the epsf_
header function in place of the psheader function if you are composing an EPS file which
is to be used in other documents. E.g., when invoked as epsf_header 5 5 105 105, the
following header information will be written to the graphics device:

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 5 5 105 105

11.14 Diagnostics and Error Messages

The assert.q script supplies the special form assert for printing diagnostic messages:

foo X = assert (X>0) || bar (1/X);

The assert function verifies that the given expression evaluates to true, in which case
it returns (). Otherwise it uses the error function to abort evaluation after printing an
error message of the following form:

! Error: assertion (X) failed, value (value of X)

Error messages are printed using the error operation of the error.q script which prints
an error message and then simply stops evaluation using halt. For instance:

X/0 = error "Division by zero!";



118 The Q Programming Language

This will print an error message

! Error: Division by zero!

when executed, and halt evaluation.
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12 Clib

Clib is the “system” module of the Q programming language. In difference to the other
standard library modules, clib is an external module, i.e., most functions are actually
implemented in C (cf. Appendix C [C Language Interface], page 191). Clib includes some
additional string operations, extended file functions, C-style formatted I/O, low-level and
binary I/O, an interface to various system functions, POSIX thread functions, expression
references, time functions, filename globbing and regular expression matching, additional
integer functions from the GMP library, and, last not least, efficient C replacements for
some common standard library list and string processing functions.

Even if you do not use the extra functionality provided by this module, you will ben-
efit from the replacement operations, which considerably speed up basic list and string
processing, sometimes by several orders of magnitude.

The module is implemented by the clib.q script which, as of release 3.0 of the Q
programming system, is included in the default prelude.

NOTE: Not all of the following operations are implemented on all systems. The UNIX-
specific operations are marked with the symbol ‘(U)’ in the clib.q file. Only a portable
subset of the UNIX system interface is provided, which encompasses the most essential
operations found on many recent UNIX (and other POSIX) systems, as described by the
ANSI C and POSIX standards as well as the Single UNIX Specification (SUS). These
operations are also available on Linux and OSX systems.

12.1 Manifest Constants

Clib defines an abundance of symbolic values for use with various system functions.
These vary from system to system; only the most common values are provided as global
variables here. The variables are declared const (read-only) and are initialized at startup
time. Flag values can be combined using bitwise logical operations as usual. A complete
list of the variables can be found at the beginning of the clib.q file. Flag values which
are unavailable on the host system will be set to zero, other undefined values to -1. Thus
undefined values will generally have no effect or cause the corresponding operations to fail.

12.2 Additional String Functions

These functions provide an interface to some familiar character routines from the C
library.

Character predicates: These work exactly like the corresponding C library routines.

public extern islower C, isupper C, isalpha C, isdigit C, isxdigit C,
isalnum C, ispunct C, isspace C, isgraph C, isprint C, iscntrl C,
isascii C;

String conversion: Convert a string to lower- or uppercase (like the corresponding C func-
tions, but work on arbitrary strings, not just on single characters).

public extern tolower S, toupper S;
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Examples

Count the number of alphanumeric characters in a text:

==> #filter isalnum (chars "The little brown fox.\n")
17

Convert a string to uppercase:

==> toupper "The little brown fox.\n"
"THE LITTLE BROWN FOX.\n"

12.3 Byte Strings

The following type represents unstructured binary data implemented as C byte vectors.
This data structure is used by the low-level I/O functions and other clib functions which
operate on binary data.

public extern type ByteStr;

public isbytestr B; // check for byte strings

Byte strings are like ordinary character strings, but they do not have a printable repre-
sentation, and they may include zero bytes. (Recall that a zero byte in a character string
terminates the string.) They can be used to encode arbitrary binary data such as C vectors
and structures. The bytestr function can be used to construct byte strings from integers,
floating point numbers, string values or lists of unsigned byte values:

public extern bytestr X; // create a byte string

The X argument denotes the data to be encoded and can be either a list of byte values
(unsigned integers in the range from 0 to 255), or an atomic data object, i.e., an integer,
floating point number or string constant. In the latter case, the argument can also have the
form (X,SIZE) indicating the desired byte size of the object; otherwise a reasonable default
size is chosen. If the specified size differs from the actual size of X, the result is zero-padded
or truncated accordingly. Integer values are encoded in the host byte order, with the least
significant GMP limb first. Floating point values are encoded using double precision by
default or if the byte count is sufficient (i.e., at least 8 on most systems), and using single
precision otherwise.

Like ordinary character strings, byte strings can be concatenated, size-measured, in-
dexed, sliced and compared lexicographically. Moreover, a byte string can be converted
back to a (multiprecision) integer, floating point number, string value, or a list of byte
values. For these purposes the following operations are provided.

public extern bcat Bs; // concatenate list of byte strings
public extern bsize B; // byte size of B
public extern byte I B; // Ith byte of B
public extern bsub B I J; // slice of B (bytes I..J)
public extern bcmp M1 M2; // compare M1 and M2

public extern bint B; // convert to unsigned integer
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public extern bfloat B; // convert to floating point number
public extern bstr B; // convert to string
public ::list B as bytes; // convert to list

Note that the bytes symbol is just a synonym for list. This function is defined as
follows:

bytes B:ByteStr = map (B!) (nums 0 (#B-1));

For convenience, the common string operators and the sub function are overloaded to
work on byte strings as well. Thus #B returns the size of B (the number of bytes it contains)
and B!I the Ith byte of B. B1++B2 concatenates B1 and B2, sub B I J returns the slice
from byte I to J, and the relational operators ‘=’, ‘<’, ‘>’ etc. can be used to compare byte
strings lexicographically. These operations are all implemented in terms of the functions
listed above.

Examples

Encode an integer as a byte string, take a look at its individual bytes, and convert the
byte string back to an integer:

==> hex

==> def B = bytestr 0x01020304; bytes B; bint B
[0x4,0x3,0x2,0x1]
0x1020304

(Note that this result was obtained on a little-endian system, hence the least significant
byte 0x04 comes first in the byte list.)

Negative integers are correctly encoded in 2’s complement:

==> def B = bytestr (-2); bytes B; bint B
[0xfe,0xff,0xff,0xff]
0xfffffffe

To work with these binary representations you must be aware of the way GMP represents
multiprecision integers. In particular, note that the default size of an integer is always a
multiple (at least one) of GMP’s limb size which is usually 4 or 8 bytes depending on the
host system’s default long integer type. The actual limb size can be determined as follows:

==> #bytes (bytestr 0)

In order to get integers of arbitrary sizes, an explicit SIZE argument may be used. For
instance, here is how we encode small (1 or 2 byte) integers:

==> bytes (bytestr (0x01,1)); bytes (bytestr (0x0102,2))
[0x1]
[0x2,0x1]

We remark that the host system’s byte sizes of various atomic C types can be determined
with symbolic values declared at the beginning of clib.q, such as SIZEOF_CHAR, SIZEOF_
SHORT, SIZEOF_LONG, SIZEOF_FLOAT and SIZEOF_DOUBLE.
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Another fact worth mentioning is that even on big-endian systems, integers are always
encoded with the “least significant limb” first. So, for instance, given that the limb size is 4,
as in the above examples, the 2-limb integer 0x0102030405060708 consists of bytes 0x8 0x7
0x6 0x5 0x4 0x3 0x2 0x1 on a little-endian system, in that order, whereas the byte order
on a big-endian system is 0x5 0x6 0x7 0x8 0x1 0x2 0x3 0x4.

Here is how we can quickly check the byte order of the host system:

==> hd (bytes (bytestr 1))

This expression returns 1 on a little-endian system and zero otherwise.

As long as an integer does not exceed the machine’s word size (which usually matches
the limb size), we can simply convert between big-endian and little-endian representation
by reversing the byte list:

==> bytestr (reverse (bytes B))

Floating point values can be encoded either in double or single precision, depending on
the SIZE argument. The default size is double precision (usually 8 bytes).

==> bfloat (bytestr (1/3)); bfloat (bytestr (1/3,SIZEOF_FLOAT))
0.333333333333333
0.333333343267441

The default size of the encoding of a character string is the length of the string. If an
explicit size is given, the string is zero-padded or truncated if necessary.

==> dec

==> def S1 = bytestr "ABC", S2 = bytestr ("ABC",2), S3 = bytestr ("ABC",5)

==> bytes S1; bytes S2; bytes S3
[65,66,67]
[65,66]
[65,66,67,0,0]

==> bstr S1; bstr S2; bstr S3
"ABC"
"AB"
"ABC"

By combining elements like the ones above, and including appropriate “tagging” in-
formation, more complex data structures can be represented as binary data as well. For
this purpose, the byte strings of the tags and the data elements can be concatenated with
bcat or the ‘++’ operator. This is useful, in particular, for compact storage of objects in
files. Moreover, some system functions involve binary data which might represent C struc-
tures and/or vectors. Such data can be assembled from the constituent parts by simply
concatenating them. For instance, consider the following C struct:

struct { char foo[108]; short bar; int baz; };

A value of this type, say {"Hello, world.", 4711, 123456}, can then be encoded as
follows:
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==> bytestr ("Hello, world.",108) ++ bytestr (4711,SIZEOF_SHORT) ++ \
bytestr (123456,SIZEOF_INT)

Similarly, a list of integers can be converted to a corresponding C vector as follows:

==> bcat (map bytestr (nums 1 100))

When encoding such C structures you must also consider alignment issues. For instance,
most C compilers will align non-byte data at even addresses.

12.4 Extended File Functions

Clib provides the following enhanced and additional file functions:

public extern ::fopen NAME MODE, fdopen FD MODE, freopen NAME MODE F;
public extern fileno F;
public extern setvbuf F MODE;
public extern tmpnam, tmpfile;
public extern ftell F, fseek F POS WHENCE;
public rewind F;
public extern gets, fgets F;
public extern fget F;
public extern ungetc C, fungetc F C;

The fopen version of clib handles the ‘+’ flag in mode strings, thus enabling you to
open files for both reading and writing. The mode "r+" opens an existing file for both
reading and writing; the initial file contents are unchanged, and both the input and output
file pointers are positioned at the beginning of the file. The "w+" mode creates a new file, or
truncates it to zero size if it already exists, and positions the file pointers at the beginning
of the file. The "a+" mode appends to an existing file (or creates a new one); the initial file
pointer is set at the beginning of the file for reading, and at the end of the file for writing.
All these modes also work in combination with the b (binary file) flag.

The freopen function is like fopen, but reopens an existing file object on another file.
Just as in C programming, the main purpose of this operation is to enable the user to
redirect the standard I/O streams associated with the interpreter process (available in the
interpreter by means of the INPUT, OUTPUT and ERROR variables).

The fdopen function opens a new file object on a given file descriptor, given that the
mode is compatible. Conversely, the fileno function returns the file descriptor of a file
object. (See also the functions for direct file descriptor manipulation in Section 12.8 [Low-
Level I/O], page 134.)

The setvbuf function sets the buffering mode for a file (IONBF = no buffering, IOLBF =
line buffering, IOFBF = full buffering). This operation should be invoked right after the file
has been opened, before any I/O operations are performed.

The tmpnam and tmpfile functions work just like the corresponding C routines: tmpnam
returns a unique name for a temporary file, and tmpfile constructs a temporary file opened
in "w+b" mode, which will be deleted automatically when it is closed. See the tmpnam(3)
and tmpfile(3) manual pages for details.
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The ftell/fseek functions are used for file positioning. The ftell function returns
the current file position, while fseek function positions the file at the given position. The
rewind function provides a convenient shorthand for repositioning the file at the beginning.
These operations work just like the corresponding C functions. The WHENCE argument of
fseek determines how the POS argument is to be interpreted; it can be either SEEK_SET
(POS is relative to the beginning of the file, i.e., an absolute position), SEEK_CUR (POS is
relative to the current position) or SEEK_END (POS is relative to the end of the file). In the
latter two cases POS can also be negative.

Portability Notes:

• According to the ISO C specification, you should use fflush or fseek before switching
between reading and writing on a file opened with the ‘+’ flag.

• On non-UNIX systems, ftell and fseek might only work reliably if the file is opened
in binary mode (b flag).

The gets/fgets functions work like the C fgets function, i.e., they read a line from
standard input or the given file including the trailing newline, if any. The fget function
reads an entire file at once and returns it as a string. The ungetc/fungetc functions push
back a single character on standard input or the given input file, like the C ungetc function.

Moreover, the following additional aliases are provided for C afficionados:

public ::readc as getc, ::freadc F as fgetc;
public ::writes S as puts, ::fwrites F S as fputs;
public ::writec C as putc, ::fwritec F C as fputc;

Examples

Open a new file for both reading and writing:

==> def F = fopen "test" "w+"

Write a string to the file:

==> fwrites F "The little brown fox.\n"
()

Current position is behind written string (at end-of-file):

==> ftell F
22

Rewind (go to the beginning of the file):

==> rewind F
()

Read back the string we’ve written before:
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==> fgets F
"The little brown fox.\n"

Check that we’re again at end-of-file:

==> feof F
true

Output another string:

==> fwrites F "The second line.\n"
()

Position behind the first string:

==> fseek F 22 SEEK_SET
()

Reread the second string:

==> fgets F
"The second line.\n"

And here’s how to read an entire text file at once:

==> def T = fget (fopen "clib.q" "r")

To quickly compute a 32 bit checksum of the file:

==> sum (map ord (chars T)) mod 0x100000000
2851508

Finally, let’s split the text into lines and add line numbers using sprintf (see Section 12.5
[C-Style Formatted I/O], page 125):

==> def L = split "\n" T

==> def L = map (sprintf "%3d: %s\n") (zip (nums 1 (#L)) L)

==> do writes (take 5 L)
1:
2: /* clib.q: Q’s system module */
3:
4: /* This file is part of the Q programming system.
5:

()

12.5 C-Style Formatted I/O

These functions provide an interface to the C printf and scanf routines:
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public extern printf FORMAT ARGS, fprintf F FORMAT ARGS,
sprintf FORMAT ARGS;

public extern scanf FORMAT, fscanf F FORMAT, sscanf S FORMAT;

Arguments to the printf routines and the results of the scanf routines are generally
encoded as tuples or single non-tuple values (if only one item is read/written).

All the usual conversions and flags of C printf/scanf are supported, except %p (pointer
conversion). The basic h and l length modifiers are also understood, but not the fancy
ISO C99 extensions like ll or hh, or l modifiers on characters and strings. Two further
unsupported features of the printf functions are the %n (number of written characters)
conversion and explicit argument indexing (m$); thus all arguments have to be in the same
order as specified in the printf format string. The %n conversion is implemented for the
scanf functions, though.

As these functions are simply wrappers for the corresponding C functions, integer con-
versions are generally limited to values which fit into machine integers. To handle integers
of arbitrary sizes, you might treat them as strings (%s) in the format string and do the
actual conversion manually with val or str.

Seasoned C programmers will appreciate that the wrapper functions provided here are
safe in that they check their arguments and prevent buffer overflows, so they should never
crash your program with a segfault. To these ends, if a %s or %[...] conversion without
maximum field width is used with scanf, the field width will effectively be limited to some
(large) value chosen by the implementation.

Examples

See the printf(3) and scanf(3) manual pages for a description of the format string
syntax. Some basic examples follow (<CR> indicates that you hit the carriage return key to
terminate a line):

==> printf "%d\n" 99
99
()

==> printf "%d\n" (99)
99
()

==> printf "%s %s %d\n" ("foo","bar",99)
foo bar 99
()

==> scanf "%d"
99<CR>
99

==> scanf "%s %s %d"
foo bar 99<CR>
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("foo","bar",99)

As indicated, multiple values are denoted as tuples, and the printf function accepts both
a single value or a one-tuple for a single conversion. The scanf function always returns a
single, non-tuple value if only a single conversion is specified. Zero items are represented
using the empty tuple. Note that you always have to supply the ARGS argument of printf,
thus you specify an empty tuple if there are no output conversions:

==> printf "foo\n" ()
foo
()

The scanf function also returns an empty tuple if no input items are converted. For
instance (as usual, using the * flag with a scanf conversion suppresses the corresponding
input item):

==> scanf "%*s"
foo<CR>
()

Note that while scanf for most conversions skips an arbitrary amount of leading white-
space, the trailing whitespace character at which a conversion stops is not discarded by
scanf. You can notice this if you invoke, e.g., readc afterwards:

==> scanf "%s %d"; readc
foo 99<CR>
("foo",99)
"\n"

If you really have to skip the trailing whitespace character, you can do this with a
suppressed character conversion, e.g.:

==> scanf "%s %d%*c"; writes "input: "||reads
foo 99<CR>
("foo",99)
input: <reads function waiting for input here>

The fprintf/fscanf functions work analogously, but are used when writing or reading
an arbitrary file instead of standard output or input. For instance:

==> def msg = "You’re not supposed to do that!"

==> fprintf ERROR "Error: %s\n" msg
Error: You’re not supposed to do that!
()

The sprintf function returns the formatted text as a string instead of writing it to a
file:

==> sprintf "%s %s %d\n" ("foo","bar",99)
"foo bar 99\n"

Likewise, sscanf takes its input from a string:

==> sscanf "foo bar 99\n" "%s %s %d"
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("foo","bar",99)

The %n conversion is especially useful with sscanf, since it allows you to determine the
number of characters which were actually consumed:

==> sscanf "foo bar 99 *** extra text here ***\n" "%s %s %d%n"
("foo","bar",99,10)

You might then use the character count, e.g., to check whether the input format matched
the entire string, or whether there remains some text to be processed.

Some remarks about the role of the length modifiers h and l are in order. Just as with
the C scanf routines, you need the l modifier to read a double precision value; a simple %f
will only read single precision number:

==> scanf "%f"
1e100<CR>
inf

==> scanf "%lf"
1e100<CR>
1e+100

The printf functions, however, always print double precision numbers, so the l modifier
is not needed:

==> sprintf "%g" 1e100
"1e+100"

For the integer conversions, the h and l modifiers denote short (usually 2 byte) and long
(usually 4 byte) integer values. If the modifier is omitted, the default integer type is used
(this usually is the same as long, but your mileage may vary).

As already indicated, the printf and scanf routines are limited to machine integer
sizes. Thus a scanf integer conversion will always return a short or long integer value,
depending on the length modifier used. If a printf integer conversion is applied to a “big”
integer value, only the least significant bytes of the value are printed, as if the printed
number (represented in 2’s complement if negative) had been cast to the corresponding
integer type in C. Thus the printed result will be consistent with C printf output under
all circumstances. For instance:

==> def N = 0xffff70008000 // big number

==> printf "%hu %lu\n" (N,N)
32768 1879080960
()

==> printf "%hd %ld\n" (N,N)
-32768 1879080960
()

To correctly print a big integer value, you can convert it manually with Q’s builtin str
function, then print the value using a %s conversion:
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==> printf "%s\n" (str 1234567812345678)
1234567812345678
()

Similarly, you can read a big integer value by converting it as a string, and then apply
the val builtin.

==> val (scanf "%s")
1234567812345678<CR>
1234567812345678

Here you might use the %[...] conversion to ensure that the number is in proper format
(the initial blank is needed here to skip any leading whitespace):

==> val (scanf " %[0-9-]")
-1234567812345678
-1234567812345678

On output, the integer and floating point conversions can all be used with either integer
or floating point arguments; integers will be converted to floating point values and vice
versa if necessary:

==> printf "An integer: %d\n" 99.9
An integer: 99
()

==> printf "A floating point value: %e\n" 99
A floating point value: 9.900000e+01
()

12.6 File and Directory Functions

These functions provide the same functionality as their C counterparts.

public extern rename OLD NEW; // rename a file
public extern unlink NAME; // delete a file
public extern truncate NAME LEN; // truncate a file (U)
public extern getcwd, chdir NAME; // get/set the working directory
public extern mkdir NAME MODE; // create a new directory
public extern rmdir NAME; // remove a directory
public extern readdir NAME; // list the files in a directory
public extern link OLD NEW; // create a hard link (U)
public extern symlink OLD NEW; // create a symbolic link (U)
public extern readlink NAME; // read a symbolic link
public extern mkfifo NAME MODE; // create a named pipe (U)
public extern access NAME MODE; // test access mode
public extern chmod NAME MODE; // set the file mode
public extern chown NAME MODE UID GID; // set file ownership (U)
public extern lchown NAME MODE UID GID; // set link ownership (U)
public extern utime NAME TIMES; // set the file times
public extern umask N; // set/get file creation mask
public extern stat NAME, lstat NAME; // file and link information
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The stat/lstat functions return a tuple consisting of the commonly available fields of
the C stat struct, see stat(2). For your convenience, the following mnemonic functions
are provided for accessing the different components:

public st_dev STAT, st_ino STAT, st_mode STAT, st_nlink STAT,
st_uid STAT, st_gid STAT, st_rdev STAT, st_size STAT, st_atime STAT,
st_mtime STAT, st_ctime STAT;

Examples

==> mkdir "tmp" 0777||chdir "tmp"||mkfifo "foo" 0666||\
rename "foo" "bar"||unlink "bar"||chdir ".."||rmdir "tmp"
()

(Create a tmp subdirectory, change to it, create a new FIFO special file, rename that
file, delete it, change back to the original directory, and remove the tmp directory. All with
a single expression which realizes identity.)

Now for something more useful. We can retrieve the current umask while setting it to
zero, and then reset it to the original value as follows:

==> def U = umask 0; oct; umask U || U; dec
022

List the files in the current directory:

==> readdir "."
[".","..","Makefile","givertcap","clib.c","clib.q","Makefile.am",
"Makefile.in","README-Clib","examples","Makefile.mingw"]

Get the size of a file:

==> st_size (stat "README-Clib")
355

12.7 Process Control

The system function returns the status code of the command if execution was successful,
and fails otherwise:

public extern system CMD; // exec command using the shell

Clib also provides the usual UNIX process creation and management routines. Most of
these really require a UNIX system; no attempt is made to emulate operations like fork on
systems where they are not implemented. Thus the only process operations which currently
work under Windows are system, exec, spawn, _spawn, exit and getpid.

public extern fork; // fork a child process (U)
public extern exec PROG ARGS; // execute program
public extern spawn PROG ARGS; // execute program in child process
public extern _spawn MODE PROG ARGS; // execute child with options
public extern nice INC; // change nice value (U)
public extern exit N; // exit process with given exit code
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public extern pause; // pause until a signal occurs (U)
public extern raise SIG; // raise signal in current process
public extern kill SIG PID; // send signal to given process (U)
public extern getpid; // current process id
public extern getppid; // parent’s process id (U)
public extern wait; // wait for any child process (U)
public extern waitpid PID OPTIONS; // wait for given child process (U)

All these operations are simply wrappers for the corresponding C library routines. Note,
however, that the kill function takes the signal to send as its first argument, which makes
it easier to use the function in a curried form, e.g., to iterate a kill operation over a list of
process numbers (as in ‘do (kill SIGTERM) PIDs’).

The exec function performs a path search like the C execlp/execvp function; the pa-
rameters for the program are given as a string list ARGS, and as usual the first argument
should repeat the program file name. This function never returns unless it fails. The spawn
and _spawn operations are provided to accommodate Windows’ lack of fork and wait;
these functions work on both UNIX and Windows. The spawn function works like exec,
but runs the program in a new child process. It returns the new process id (actually the
process handle under Windows). The _spawn function is like spawn, but accepts an ad-
ditional MODE parameter which determines how the child is to be executed, either P_WAIT
(wait for the child, return its exit status), P_NOWAIT (do not wait for the child, same as
spawn), P_OVERLAY (replace the current image with the new process, same as exec) and
P_DETACH (run the new process in the background). (Note that the P_DETACH option is
ignored on UNIX systems; the correct way to code a “daemon” on UNIX is shown in the
examples section below.)

On UNIX, the following routines are provided to interpret the status code returned by
the system, _spawn, wait and waitpid functions:

public extern isactive STATUS;
// process is active
public extern isexited STATUS, exitstatus STATUS;
// process has exited normally, get its exit code
public extern issignaled STATUS, termsig STATUS;
// process was terminated by signal, get the signal number
public extern isstopped STATUS, stopsig STATUS;
// process was stopped by signal, get the signal number

For more information about the process functions, we refer the reader to the correspond-
ing UNIX manual pages.

Operations to access the process environment are also implemented. The getenv func-
tion fails if the given variable is not set in the environment; this lets you distinguish this
error condition from a defined variable with empty value. The setenv function overwrites
an existing definition of the given variable:

public extern getenv NAME, setenv NAME VAL;
// get/set environment variables
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On UNIX, the following operations provide access to process user and group information,
as well as process groups and sessions. Not all operations may be implemented on all UNIX
flavours. Please see the UNIX manual for a description of these functions.

/* User/group-related functions (U). */

public extern setuid UID, setgid GID; // set user/group id of process
public extern seteuid UID, setegid GID; // set effective user/group id
public extern setreuid RUID EUID, setregid RGID EGID;

// set real and effective ids
public extern getuid, geteuid; // get real/effective user id
public extern getgid, getegid; // get real/effective group id
public extern getlogin; // get real login name

// get/set supplementary group ids of current process
public extern getgroups, setgroups GIDS;

/* Session-related routines (U). */

public extern getpgid PID, setpgid PID PGID; // get and set process group
public extern getpgrp, setpgrp; // dito, for calling process
public extern getsid PID; // get session id of process
public extern setsid; // create a new session

Examples

Invoke the system function to execute a shell command:

==> system "ls -l"

You can also run the program directly with the spawn function:

==> spawn "ls" ["ls","-l"]

Get and set an environment variable:

==> getenv "HOME"
"/home/ag"

==> getenv "MYVAR" // variable is undefined
getenv "MYVAR"

==> setenv "MYVAR" "foo bar"
()

==> getenv "MYVAR"
"foo bar"

Here are some examples demonstrating the use of named pipes and the process functions
on UNIX systems. The mkfifo function allows the creation of so-called “FIFO special files”
a.k.a. named pipes, which provide a simple inter-process communication facility.

For instance, create a named pipe as follows:
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==> mkfifo "pipe" 0666
()

You can then open the writeable end of the pipe:

==> def OUT = fopen "pipe" "w"

Note that this call blocks until the input side of the pipe has been opened. For this
purpose, start another instance of the interpreter (e.g., in another xterm), and from there
open the pipe for reading:

==> def IN = fopen "pipe" "r"

Both fopen calls should now have finished, and you can write something to the output
end of the pipe in the first instance of the interpreter:

==> fwrites OUT "Hello, there!\n"

Go to the other interpreter instance, and read back the string from there:

==> freads IN
"Hello, there!"

As usual, each end of the pipe is closed as soon as the corresponding file object is no
longer accessible. When you close the writeable end of the pipe using, e.g., undef OUT in
the first instance of the interpreter, the input side of the pipe will reach end-of-file, and thus
feof IN will become true. After closing the pipe also on the input side, you can remove
the FIFO special file with the unlink function.

You can also use named pipes to set up a communication channel to child processes
created with fork. For instance:

def NAME = tmpnam;
def PIPE = mkfifo NAME 0666;
def MSG = "Hello there!\n";

test = printf "Parent writes: %s" MSG ||
fwrites (fopen NAME "w") MSG ||
writes "Parent waits for child ...\n" ||
printf "Parent: child has exited with code %d\n" wait

if fork > 0;
= printf "Child reads: %s\n" (freads (fopen NAME "r")) ||
writes "Child exiting ...\n" || exit 0

otherwise;

==> test
Parent writes: Hello there!
Parent waits for child ...
Child reads: Hello there!
Child exiting ...
Parent: child has exited with code 0
()
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==> unlink NAME
()

Another method for accomplishing this with anonymous pipes is discussed in Section 12.8
[Low-Level I/O], page 134.

On UNIX, it also possible to implement “daemons”, i.e., processes which place themselves
in the background and continue to run even when you log out. The following little script
shows how to do this.

/* Becoming a daemon is easy: Just fork, have the parent exit, and call setsid
in the child to start a new session. The new process becomes a child of the
init process and has no controlling terminal. Thus it keeps running even if
you log out, until it gets killed or the system shuts down. */

daemon = setsid || main if fork = 0;
= exit 0 otherwise;

/* The main code of the daemon then closes file descriptors inherited by the
parent and starts executing. In this example we just open a logfile and
start logging messages in regular intervals. We also handle the condition
that we are terminated by a signal. */

main = do close [0,1,2] || log F "daemon started" ||
do (trap 1) [SIGINT, SIGTERM, SIGHUP, SIGQUIT] ||
catch (sig F) (loop F) where F:File = fopen "log" "w";

= perror "daemon" || exit 1 otherwise;

sig F (syserr SIG)
= log F (sprintf "daemon stopped by signal %d" (-SIG)) ||
exit 0;

loop F = sleep 5 || log F "daemon still alive" || loop F;

log F MSG = fprintf F "%s at %s" (MSG, ctime time) || fflush F;

12.8 Low-Level I/O

These functions provide operations for direct manipulation of files on the file descrip-
tor level. For a closer description of the following operations we refer the reader to the
corresponding UNIX manual pages.

public extern open NAME FLAGS MODE; // create a new descriptor
public extern close FD; // close a descriptor
public extern dup FD, dup2 OLDFD NEWFD; // duplicate a descriptor
public extern pipe; // create an unnamed pipe
public extern fstat FD; // stat descriptor
public extern fchdir FD; // change directory (U)
public extern fchmod FD MODE; // change file mode (U)
public extern fchown FD UID GID; // set file ownership (U)
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public extern ftruncate FD LEN; // truncate a file (U)
public extern fsync FD, fdatasync FD; // sync the given file (U)

The following operations can be used on both file descriptors and file objects. They read
and write binary data represented as byte strings (see Section 12.3 [Byte Strings], page 120),
providing an interface to the system’s read/write(2) and fread/fwrite(3) functions. The
bread function returns a byte string of the given size read from the given file. Note that the
returned byte string may actually be shorter than SIZE bytes because, e.g., end of file has
been reached or not enough input was currently available on a pipe. The bwrite function
returns the number of bytes actually written which is usually the size of the byte string
unless an error occurs. The functions fail if an error occurred before anything was read
or written. It is the application’s responsibility to check these error conditions and handle
them in an appropriate manner.

public extern bread FD SIZE; // read a byte string
public extern bwrite FD DATA; // write a byte string

For instance, the following function uses bread and bwrite to copy an input to an output
file, using chunks of 8192 bytes at a time:

fcopy F G = () if bwrite G (bread F 8192) < 8192;
= fcopy F G otherwise;

The file pointer of a descriptor can be positioned with lseek. In difference to fseek,
this function returns the new offset. To determine the current position you can hence use
an expression like ‘lseek FD 0 SEEK_CUR’.

public extern lseek FD POS WHENCE;

Some terminal-related routines are also provided:

public extern isatty FD; // is descriptor a terminal?

The following are UNIX-specific:

public extern ttyname FD; // terminal associated with descriptor
public extern ctermid; // name of controlling terminal
public extern openpty, forkpty; // pseudo terminal operations

The openpty function returns a pair (MASTER, SLAVE) of file descriptors opened for
both reading and writing on a “pseudo terminal”. MASTER is to be used in the controlling
process, while SLAVE can be used for the standard I/O streams in a child process. The
forkpty function combines openpty with fork and makes the slave device the controlling
terminal of the child process; it returns a pair (PID, MASTER), where PID is zero in the
child process and the process id of the child in the parent, and MASTER is the master end
of the pseudo terminal to be used by the parent. These functions are commonly used to
implement applications which drive other programs through a terminal emulation interface.

On UNIX systems, clib also provides access to the following fcntl operation (see
Section 2 of the UNIX manual):

public extern fcntl FD CMD ARG;

The ARG parameter of fcntl depends on the type of command CMD which is executed.
The available command codes and other relevant values are defined as global variables,



136 The Q Programming Language

as listed below. Flags are bitwise disjunctions of the symbolic values listed below. (The
following are the values present on most systems. Specific implementations may provide
additional flags.)

public var const
// fcntl command codes
F_DUPFD, F_GETFD, F_SETFD, F_GETFL, F_SETFL,
F_GETLK, F_SETLK, F_SETLKW,

// lock types
F_RDLCK, F_WRLCK, F_UNLCK,

// file access modes and access mode bitmask
O_RDONLY, O_WRONLY, O_RDWR, O_ACCMODE,

// file descriptor flags
FD_CLOEXEC,

// status flags
O_CREAT, O_EXCL, O_TRUNC, O_APPEND, O_NONBLOCK, O_NDELAY, O_NOCTTY,
O_BINARY;

The following types of commands are implemented:

fcntl FD F_DUPFD ARG // duplicate a file descriptor

fcntl FD F_GETFD () // get file descriptor flags
fcntl FD F_SETFD FLAGS // set file descriptor flags

fcntl FD F_SETFD () // get status flags/access mode
fcntl FD F_SETFD FLAGS // set status flags

fcntl FD F_GETLK (TYPE,POS,LEN[,WHENCE]) // query file lock information
fcntl FD F_SETLK (TYPE,POS,LEN[,WHENCE]) // set an advisory file lock
fcntl FD F_SETLKW (TYPE,POS,LEN[,WHENCE]) // blocking variant of F_SETLK

The first five commands serve to duplicate descriptors and to retrieve and change the file
descriptor and status flags. The remaining commands are used for advisory file locking. A
file lock is specified as a triple (TYPE, POS, LEN) or quadrupel (TYPE, POS, LEN, WHENCE),
where TYPE is the type of lock (F_RDLCK, F_WRLCK or F_UNLCK for read locks, write locks and
unlocking, respectively), POS the position in the file, LEN the number of bytes to be locked
(0 means up to the end of the file) and WHENCE specifies how the POS argument is to be
interpreted. (This parameter has the same meaning as for the fseek and lseek functions,
see above. If WHENCE is omitted, it defaults to SEEK_SET, i.e., absolute positions.) The
value returned by the F_GETLK command is the lock description with TYPE set to F_UNLCK
if the given lock would be accepted, and the description of a current lock blocking the lock
request otherwise. (In the latter case the return value is actually a quadrupel, with the id
of a process currently owning a conflicting lock in the last component.)
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Note that the standard I/O operations use buffered I/O by default which might interfere
with record locking. Therefore in applications requiring individual record locking you should
work with the low-level operations (open, bwrite, etc.) instead.

The following select function waits for a set of files to change I/O status. Note that
this operation is available on Windows as part of the socket interface, but it only applies
to sockets there.

public extern select FILES;

The input is a tuple (IN, OUT, ERR, TIMEOUT) consisting of three lists of file descriptors
and/or file objects to be watched, and an optional integer or floating point value specifying
a timeout in seconds. The function returns as soon as either a member of IN or OUT becomes
ready for performing an I/O operation (without blocking), or an error condition is signaled
for a member of ERR. The returned value is a triple (IN, OUT, ERR) with all the members of
the original lists which are now ready for I/O. If the timeout is exceeded before any of the
files has become ready, a triple of three empty lists is returned. If no timeout is specified
then the function may block indefinitely.

Examples

These examples are mostly UNIX-specific, thus Windows users might wish to skip ahead.

Fcntl

The following definitions show how the fcntl function can be used to change a file’s
“non-blocking” flag. This is useful, e.g., if we want to read from standard input or a pipe
but do not want to be blocked until input becomes available. Instead, having set the non-
blocking flag, input operations will fail immediately if there is no input to be read right
now.

/* set and clear the O_NONBLOCK flag of a file */
set_nonblock FD:Int = fcntl FD F_SETFL (FLAGS or O_NONBLOCK)

where FLAGS = fcntl FD F_GETFL ();
clr_nonblock FD:Int = fcntl FD F_SETFL (FLAGS and not O_NONBLOCK)

where FLAGS = fcntl FD F_GETFL ();

And here is how we can perform advisory locking on an entire file.

/* place an advisory read or write lock on an entire file (fail if error) */

rdlock FD:Int = () where () = fcntl FD F_SETLK (F_RDLCK, 0, 0);
wrlock FD:Int = () where () = fcntl FD F_SETLK (F_WRLCK, 0, 0);

/* remove the lock from the file */

unlock FD:Int = () where () = fcntl FD F_SETLK (F_UNLCK, 0, 0);

/* predicates to check whether a read or write lock could be placed */

rdlockp FD:Int = (LOCK!0 = F_UNLCK)
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where LOCK:Tuple =
fcntl FD F_GETLK (F_RDLCK, 0, 0);

wrlockp FD:Int = (LOCK!0 = F_UNLCK)
where LOCK:Tuple =

fcntl FD F_GETLK (F_WRLCK, 0, 0);

Note that to apply these functions to standard file objects you can use the fileno
function (see Section 12.4 [Extended File Functions], page 123) as follows:

==> rdlock (fileno F)

Select

The select function accepts both files and file descriptors as input. Here is a way to
test whether input is currently available from a file/descriptor:

avail F = not null (select ([F],[],[],0)!0);

This is useful, in particular, if the file is actually a pipe. For instance:

==> def F = popen "sleep 5; echo done" "r"

==> avail F // no input to be read yet, wait ...
false

==> avail F // ... input available now
true

==> fget F
"done\n"

However, most of the time select is used for multiplexing I/O operations. For instance,
the following loop processes input from a set of files, one line at a time:

loop FILES = loop (proc FILES F)
where ([F|_],_,_) = select (FILES,[],[])
if not null FILES;

= () otherwise;

proc FILES F = // done with this file, get rid of it
filter (neq F) FILES

if feof F;
= // process a line

writes (fgets F) || FILES;

Anonymous Pipes

The pipe and dup2 operations provide a quick way to reassign input and output of a
child process and connect it to corresponding file objects in the parent. For instance, here’s
how we can implement a popen2 function which works like the built-in popen routine, but
allows to redirect both the input and output side of a child process:
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/* Create two unnamed pipes, one for the parent to read and the child to
write, the other one for the child to read and the parent to write. */

popen2 CMD = spawn2 CMD (P_IN, P_OUT) (C_IN, C_OUT)
where (P_IN, C_OUT) = pipe, (C_IN, P_OUT) = pipe;

/* Fork the child and redirect its standard input and output streams to the
child’s ends of the pipe. This is accomplished with dup2 SRC DEST which
closes the file descriptor DEST and then makes DEST a copy of SRC. In the
parent we use fdopen to open two new file objects for the parent’s ends of
the pipes. */

spawn2 CMD (P_IN, P_OUT) (C_IN, C_OUT)
= close P_IN || close P_OUT ||
dup2 C_IN (fileno INPUT) || dup2 C_OUT (fileno OUTPUT) ||
exec "/bin/sh" ["/bin/sh", "-c", CMD]

if fork = 0;
= close C_IN || close C_OUT ||
(fdopen P_IN "r", fdopen P_OUT "w")

otherwise;

The popen2 function employs fork and exec to spawn a child process which executes
the given command using the shell, after redirecting the child’s input and output to two
pipes. In the parent process, the popen2 function returns a pair of files opened on the other
ends of the child’s descriptors.

The following piece of Q code shows how to apply the popen2 function defined above in
order to pipe a string list into the UNIX sort program and construct the sorted list from
the output:

mysort STRL = do (fprintf OUT "%s\n") STRL || fclose OUT || digest IN
where (IN, OUT) = popen2 "sort";

digest IN = [] if feof IN;
= [freads IN|digest IN] otherwise;

Example:

==> mysort ["five","strings","to","be","sorted"]
["be","five","sorted","strings","to"]

==> wait // get exit code of child process (sort program)
(15804,0)

12.9 Terminal Operations

The following (UNIX-specific) operations provide an interface to the POSIX termios
interface. Terminal attributes are stored in a “termios” structure, represented as a 7-
tuple (IFLAG, OFLAG, CFLAG, LFLAG, ISPEED, OSPEED, CC). The control character set CC
is represented as a list of character numbers, indexed by the symbolic constants VEOF etc.
See termios(3) for further details.
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public extern tcgetattr FD; // get terminal attributes
public extern tcsetattr FD WHEN ATTR; // set terminal attributes

public extern tcsendbreak FD DURATION; // send break
public extern tcdrain FD; // wait until all output finished
public extern tcflush FD QUEUE; // flush input or output queue
public extern tcflow FD ACTION; // control input/output flow

public extern tcgetpgrp FD; // get terminal process group
public extern tcsetpgrp FD PGID; // set terminal process group

/* Access components of the termios structure. */

public c_iflag ATTR, c_oflag ATTR, c_cflag ATTR, c_lflag ATTR,
c_ispeed ATTR, c_ospeed ATTR, c_cc ATTR;

Example

This example shows how to use the termios functions to read a password from the
terminal without echoing. This is an almost literal translation of the C program described
in Richard Stevens: Advanced Programming in the UNIX Environment, Addison-Wesley,
1993, cf. p. 350. The main difference is that we merely ignore the SIGINT and SIGTSTP
signals instead of blocking them (the latter is not supported by Q’s trap builtin).

getpass PROMPT = fwritec F "\n" || unprep F SAVE || PW
where F:File = fopen ctermid "r+", SAVE = prep F,
PW = fwrites F PROMPT || fflush F || freads F;

/* prep F: ignore SIGINT and SIGTSTP and prepare the terminal */

prep F = tcsetattr (fileno F) TCSAFLUSH NATTR || (ATTR,TRAPS)
where TRAPS = map (trap SIG_IGN) [SIGINT,SIGTSTP],
ATTR = tcgetattr (fileno F),
(IF,OF,CF,LF,IS,OS,CC) = ATTR,
LF = LF and not (ECHO or ECHOE or ECHOK or ECHONL),
NATTR = (IF,OF,CF,LF,IS,OS,CC);

/* unprep F SAVE: revert to previous settings */

unprep F (ATTR,TRAPS)
= tcsetattr (fileno F) TCSAFLUSH ATTR ||
zipwith trap TRAPS [SIGINT,SIGTSTP];

12.10 System Information

Error codes from various system operations can be retrieved with the following functions:

public extern errno, seterrno N; // get/set last error code
public extern perror S, strerror N; // print error message
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The perror function is commonly used to report error conditions in system operations
on the standard error file. For instance:

==> fopen "/etc/passw" "r"
fopen "/etc/passw" "r"

==> perror "fopen"
fopen: No such file or directory
()

If more elaborate formatting is required then you can use strerror on the errno value
to obtain the error message as a string:

==> fprintf ERROR "fopen returned message ‘%s’\n" (strerror errno)
fopen returned message ‘No such file or directory’
()

Note that errno is only set when an error occurs in a system call. You can use seterrno
to reset the errno value before a system operation to check whether there actually was an
error while executing the system call:

==> seterrno 0
()

==> fopen "/etc/passwd" "r"
<<File>>

==> perror "fopen"
fopen: Success
()

The remaining operations are used to obtain various information about the system and
its information databases. For instance, the uname operation returns a 5-tuple containing
information identifying the operating system (this operation is generally only available on
UNIX-like systems):

public extern uname;

/* Access components of uname result. */

public un_sysname UNAME, un_nodename UNAME, un_release UNAME,
un_version UNAME, un_machine UNAME;

The hostname of the system can be retrieved with the gethostname function.

public extern gethostname;

The password and group database can be accessed with the following functions. Password
entries are encoded as 7-tuples (NAME, PASSWD, UID, GID, GECOS, DIR, SHELL), group en-
tries as 4-tuples (NAME, PASSWD, GID, MEMBERS). This information is only available on
UNIX-like systems.

public extern getpwuid UID, getpwnam NAME; // look up a password entry
public extern getpwent; // list of all pw entries
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public extern getgrgid GID, getgrnam NAME; // look up group entry
public extern getgrent; // list of all group entries

/* Access components of password and group structures. */

public pw_name PW, pw_passwd PW, pw_uid PW, pw_gid PW, pw_gecos PW,
pw_dir PW, pw_shell PW;

public gr_name GR, gr_passwd GR, gr_gid GR, gr_members GR;

Moreover, the crypt function can be used to perform UNIX password encryption (see
crypt(3) for details).

public extern crypt KEY SALT; // (U)

The following functions can be used to query host information as well as the network
protocols and services available on your system. This information is closely related to the
socket interface described in Section 12.11 [Sockets], page 143. For a closer description of
these operations we refer the reader to the corresponding manual pages. Note that the
gethostent, getprotoent and getservent operations are not available on Windows.

The host database: Host entries are of the form (NAME, ALIASES, ADDR_TYPE, ADDR_
LIST), where NAME denotes the official hostname, ALIASES its alternative names, ADDR_TYPE
the address family and ADDR_LIST the list of addresses.

public extern gethostbyname HOST, gethostbyaddr ADDR;
public extern gethostent; // (U)

public h_name HENT, h_aliases HENT, h_addr_type HENT, h_addr_list HENT;

Note that both hostnames and IP addresses are specified as strings. Hostnames are
symbolic names such as "localhost", and can also have a domain name specified, as
in "www.gnu.org". IPv4 addresses use the well-known “numbers-and-dots” notation, like
the loopback address "127.0.0.1". IPv6 addresses are usually written as eight 16-bit
hexadecimal numbers that are separated by colons; two colons are used to abbreviate strings
of consecutive zeros. For example, the IPv6 loopback address "0:0:0:0:0:0:0:1" can be
abbreviated as "::1".

The protocol database: Protocol entries are of the form (NAME, ALIASES, PROTO) de-
noting official name, aliases and number of the protocol.

public extern getprotobyname NAME;
public extern getprotobynumber PROTO;
public extern getprotoent; // (U)

public p_name PENT, p_aliases PENT, p_proto PENT;

The service database: Service entries are of the form (NAME, ALIASES, PORT, PROTO)
denoting official name, aliases, port number and protocol number of the port. The NAME
argument of getservbyname can also be a pair (NAME, PROTO) to restrict the search to
services for the given protocol (given by its name). Likewise, the PORT argument can also
be given as (PORT, PROTO).
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public extern getservbyname NAME;
public extern getservbyport PORT;
public extern getservent; // (U)

public s_name PENT, s_aliases PENT, s_port PENT, s_proto PENT;

For instance, here is some information retrieved from a typical Linux system:

==> uname
("Linux","obelix","2.4.19-4GB","#2 Tue Mar 4 16:03:51 CET 2003","i686")

==> gethostname
"obelix"

==> gethostbyname gethostname
("obelix.local",["obelix"],2,["127.0.0.2"])

==> gethostbyaddr "::1"
("localhost",["ipv6-localhost","ipv6-loopback"],10,["::1"])

==> getprotobyname "tcp"
("tcp",["TCP"],6)

==> getservbyname "ftp"
("ftp",[],5376,"tcp")

==> getpwuid getuid
("ag","x",500,100,"Albert Graef","/home/ag","/bin/bash")

==> getgrgid getgid
("users","x",100,[])

12.11 Sockets

The following functions are available on systems providing a BSD-compatible socket
layer, which, besides BSD, includes BEOS, Linux, OSX, Windows and most recent System
V flavours. Sockets provide bidirectional communication channels on the local machine as
well as across the network. Sockets are represented by file descriptors which can be written
to and read from with the send and recv functions. On most systems, socket descriptors
are just ordinary file descriptors which can also be used with low-level I/O functions and
fdopen as usual. However, on some systems (in particular, BEOS and Windows), socket
descriptors are “special” and all socket I/O must be performed with the special socket
operations.

At creation time, a socket is described by the following attributes (see socket(2) for
more details):

• Address family (sometimes also referred to as namespace, protocol family or domain).
The adress families supported by this implementation are AF_LOCAL (a.k.a. AF_UNIX
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a.k.a. AF_FILE), AF_INET and AF_INET6. Not all protocol families may be available on
all systems (e.g., the Windows socket library only supports AF_INET).

• Communication style (also called the socket type). One distinguishes between “con-
nection-based” sockets which are used to establish client/server connections, and “con-
nectionless” sockets which allow data to be received from and sent to arbitrary ad-
dresses. The socket types supported by this implementation are SOCK_STREAM, SOCK_
DGRAM, SOCK_SEQPACKET, SOCK_RAW and SOCK_RDM. Among these, SOCK_STREAM, SOCK_
SEQPACKET and SOCK_RDM are connection-based. Please note that not all socket types
are supported for all protocol families, and some socket types may be entirely missing
on non-UNIX systems.

• Protocol: For each address a.k.a. protocol family and socket type there may be a
number of different protocols available. For the AF_LOCAL namespace, which refers
to the local filesystem, the protocol is always 0, the default protocol. The available
protocols for the internet namespaces can be retrieved from the protocol database (see
Section 12.10 [System Information], page 140).

Before another process can connect to a socket it must also be bound to an address. The
address format depends on the address family of the socket. For the local namespace, the
address is simply a filename on the local filesystem. For the IPv4 namespace, it is a pair
(HOST, PORT) where HOST denotes the host name or IP address, specified as a string, and
PORT is a port number. For the IPv6 namespace, it is a quadrupel (HOST, PORT, FLOWINFO,
SCOPEID). Host names and known port numbers can be retrieved from the host and service
databases (see Section 12.10 [System Information], page 140).

The following operations are provided to create a socket, or a pair of connected sockets,
for the given address family, socket type and protocol. They return the file descriptor of
the socket (resp. a pair of file descriptors).

public extern socket FAMILY TYPE PROTO;
public extern socketpair FAMILY TYPE PROTO; // (U)

The shutdown function terminates data transmission on a socket. You can stop reading,
writing or both, depending on whether HOW is SHUT_RD, SHUT_WR or SHUT_RDWR. Note that
this operation does not close the socket’s file descriptor; for this purpose closesocket is
used (see below).

public extern shutdown SOCKET HOW;

The closesocket function closes a socket. On most systems this is just identical to
close (see Section 12.8 [Low-Level I/O], page 134), but, as already noted, on some systems
socket descriptors are special and you must use this function instead.

public extern closesocket SOCKET;

The bind function binds a socket to an address. This is also done automatically when
the socket is first used. However, if the socket has to be found by another process you’ll
have to explicitly specify an address for it. The bind function does just that.

public extern bind SOCKET ADDR;

The following operations are used to start listening for and accept connection requests
on a socket. These operations are used on the server side of a connection-based socket.
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The argument N of listen denotes the maximum number of pending connection requests
for the server. After the call to listen, the server can accept connections from a client with
the accept function, which returns a pair (SOCKET, ADDR), where SOCKET is a new socket
connected to the client, and ADDR is the client’s address.

public extern listen SOCKET N;
public extern accept SOCKET;

The connect function is used to initiate a connection on a socket. This function can
be used on both connection-based and connectionless sockets. In the former case, connect
can only be invoked once. In the latter case, it can be invoked multiple times, and sets the
remote socket for subsequent send and receive operations.

public extern connect SOCKET ADDR;

The following routines retrieve information about a socket. The local address of a socket
and the address of the remote socket it is connected to can be retrieved with getsockname
and getpeername. Socket options, specified using a protocol level LEVEL and an option index
OPT, can be queried and changed with getsockopt and setsockopt. The option values are
encoded as byte strings (cf. Section 12.3 [Byte Strings], page 120). For a description of the
available options see getsockopt(2).

public extern getsockname SOCKET;
public extern getpeername SOCKET;
public extern getsockopt SOCKET LEVEL OPT;
public extern setsockopt SOCKET LEVEL OPT VAL;

Finally, the following specialized I/O functions are used to transmit data over a socket.
All data is encoded as byte strings. The receive operations return the received data (which
may be shorter than the requested size, if not enough data was currently available), the send
operations the number of bytes actually written. For recvfrom/sendto the data is encoded
as a pair (ADDR, DATA) which includes the source/destination address; these operations are
typically used for connectionless sockets. The FLAGS argument is used to specify special
transmission options (see the MSG_* constants at the beginning of clib.q).

public extern recv SOCKET FLAGS SIZE, send SOCKET FLAGS DATA;
public extern recvfrom SOCKET FLAGS SIZE, sendto SOCKET FLAGS DATA;

Example

The following script demonstrates how we can implement a connectionless server in the
IPv4 namespace which repeatedly accepts a request from a client and sends back an answer.
In this example the requests are strings denoting Q expressions; the server evaluates each
expression and sends back the result as a string. The client reads input from the user,
transmits it to the server and prints the received answer. Note that the transmitted strings
are represented as byte strings, as required by the recvfrom and sendto operations. The
bytestr and bstr functions are used to convert between character and byte strings, see
Section 12.3 [Byte Strings], page 120.

def BUFSZ = 500000; // buffer size

/* the server: receive messages, evaluate them as Q expressions, and
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send back the results */

def SERVER = ("localhost",5001); // the server address

server = server_loop FD
where FD:Int = socket AF_INET SOCK_DGRAM 0,
() = bind FD SERVER;

= perror "server" otherwise;

server_loop FD = sendto FD 0 (ADDR,eval MSG) || server_loop FD
where (ADDR,MSG) = recvfrom FD 0 BUFSZ;

= server_loop FD otherwise;

/* evaluate an expression encoded as a byte string, catch syntax
errors and exceptions, convert result back to a byte string */

eval MSG = catch exception (bytestr (str VAL))
where ’VAL = valq (bstr MSG);

= bytestr ">>> SYNTAX ERROR" otherwise;
exception _ = bytestr ">>> ABORTED";

/* the client: read input from user, send it to the server, print
returned result */

def CLIENT = ("localhost",5002); // the client address

client = client_loop FD
where FD:Int = socket AF_INET SOCK_DGRAM 0,
() = bind FD CLIENT;

= perror "client" otherwise;

client_loop FD = sendto FD 0 (SERVER,bytestr MSG) ||
printf "%s\n" (bstr (recv FD 0 BUFSZ)) || client_loop FD

if not null MSG
where MSG:String = writes "\nclient> " || flush || reads;

= () otherwise;

For instance, we can invoke the server in a secondary thread and then execute the client
as follows:

==> def S = thread server

==> client

client> prd (nums 1 50)
30414093201713378043612608166064768844377641568960512000000000000

client> 1+)
>>> SYNTAX ERROR
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client> quit
>>> ABORTED

client>

12.12 POSIX Threads

On systems where the POSIX threads library or some compatible replacement is available
(this includes Windows and most modern UNIXes), clib provides functions for handling
multiple threads of control. Threads, a.k.a. “light-weighted processes”, allow you to realize
“multithreaded scripts” consisting of different tasks which together perform some compu-
tation in a distributed manner. All tasks are executed concurrently. Thus you can, e.g.,
perform some lengthy calculation in a background task while you go on evaluating other
expressions in the interpreter’s command loop. You can also have tasks communicate via
mutexes, conditions and semaphores.

The operations described in this section are in close correspondence with POSIX 1003.1b.
However, some operations are named differently, and semaphores provide the extra func-
tionality of sending data from one thread to another. Mutexes are also supported, mostly
for the purpose of handling critical sections involving operations with side-effects (I/O etc.).
Mutexes are not required to make conditions work since these have their own internal mu-
tex handling. For more information on POSIX threads, please refer to the corresponding
section in the UNIX manual.

Please note that these functions will only work as advertised if the interpreter has been
built with POSIX thread support. We also remark that in the current implementation
the interpreter effectively serializes multithreaded scripts on the reduction level and thus
user-level threads cannot really take advantage of multi-processor machines.

12.12.1 Thread Creation and Management

Clib threads are represented using handles (objects of type Thread). Note that a thread
is canceled automatically as soon as its handle is garbage collected, thus you should keep
the handle around as long as the thread is needed. For convenience, thread handles are
numbered arbitrarily, starting at 0 which denotes the main thread, and are ordered by the
thread numbers. This is handy, e.g., if you want to use thread handles as indices in a
dictionary.

public extern type Thread; // thread handle type

public isthread THREAD; // check for thread objects

public extern thread_no THREAD; // thread number
public extern this_thread; // handle of the current thread

The basic thread operations are listed below. The thread function starts evaluating
its special argument in a new thread, and returns its handle. You can wait for a thread
to terminate and obtain the evaluated result with the result function. (If there is no
result, because the thread has been canceled, or was aborted with halt, quit or a runtime
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error, result fails.) Note that halt or quit in a thread which is not the main thread
only terminates the current thread; however, the exit function, cf. Section 12.7 [Process
Control], page 130, always exits from the interpreter. You can also terminate the current
thread immediately and return a given value as its result with the return function; in the
main thread, this function is equivalent to halt and the return value is ignored. Moreover,
all threads except the main thread can also be canceled from any other thread using the
cancel function. Finally, the yield function allows the interpreter to switch threads at
any given point (normally the interpreter will only switch contexts in certain builtins and
when a new rule is activated).

public extern special thread X; // start new thread
public extern return X; // terminate thread with result X
public extern cancel THREAD; // cancel THREAD
public extern result THREAD; // wait for THREAD, return result
public extern yield; // allow context switch

Clib threads always use deferred cancellation, hence thread cancellation requests are
usually not honored immediately, but are deferred until the thread reaches a cancellation
point where it is safe to do so. Cancellation points occur at certain C library calls listed in
the POSIX threads documentation, when a new equation is activated in the Q interpreter,
and when yield is called.

You can also check whether a thread is still active or has been canceled. If neither
condition holds, then the thread has already been terminated and you can obtain its result
with the result operation.

public extern active THREAD; // check if THREAD is active
public extern canceled THREAD; // check if THREAD was canceled

12.12.2 Realtime Scheduling

Threads are always created with the default “non-realtime” scheduling policy. On some
systems it is also possible to increase a thread’s priority and have it scheduled in “realtime”.
This is useful for tasks with strict timing and responsiveness requirements, such as a function
performing recording or playback in a multimedia application.

The scheduling policy and the priority of a thread can be changed with the following
function which takes two extra arguments, the policy POL (0 = default, 1 = realtime round-
robin, 2 = realtime fifo scheduling) and the priority PRIO (where 0 denotes the default
priority). Note that on most systems realtime scheduling will only be granted to privileged
processes.

public extern setsched THREAD POL PRIO; // set scheduling parameters

The current scheduling policy and priority of a thread can be retrieved with the getsched
function:

public extern getsched THREAD; // get scheduling parameters

The actual range of priority values is system-specific. On a typical UNIX system a
non-realtime thread can only have priority 0, while realtime threads always have positive
priorities. Higher priority threads always take precedence over lower priority ones. All
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else being equal, threads using round-robin scheduling are each given their “fair” timeslice,
while fifo threads are handled on a “first come first served” basis. The latter can only be
interrupted by higher priority processes (and signals) and thus should be used with utmost
care. In any case you must make sure that a high-priority thread does not run unsuspended
for extended periods of time, otherwise it might lock up your system. Thus a realtime
thread should typically spend most of its time “in limbo” where it waits for input to arrive
or a condition to be signaled.

Assuming that the priority value ranges are contiguous and contain either 0 or 1, you
can determine the ranges for your system with the following little script:

test POL PRIO = setsched this_thread 0 0 || true
where () = setsched this_thread POL PRIO;

= false otherwise;

priotest POL = (hd L,last L) if not null L
where L = reverse (while (test POL) pred 0) ++
while (test POL) succ 1;

Here is a sample result obtained on Linux:

==> map priotest [0,1,2]
[(0,0),(1,99),(1,99)]

Realtime Scheduling under Windows

Under Windows, things are a bit different, since Windows does not really have POSIX-
compatible thread scheduling. Instead, processes have “priority classes” while threads have
“priorities” which are interpreted in the context of the priority class of the process they
belong to. Therefore under Windows the POL argument of the setsched operation is actually
interpreted as a priority class for the entire process while the PRIO argument specifies the
priority of the individual thread. Clib keeps track of all setsched calls and always lets the
process have the highest priority class specified for a thread which is still active.

To these ends, the policy values 0, 1 and 2 are mapped to the priority classes “normal”,
“high” and “realtime”. (The latter should be used sparingly, if at all, in a Q script, because
it makes Windows very unresponsive.) Moreover, the setsched function also accepts a
policy value of -1 to denote “idle time” processes. (You’ll rarely have any use for this,
unless you want to write a screensaver in Q.) For each policy, the possible priority values
have a range from -3 to 3, where -3 denotes idle time threads, 0 is the normal priority, and
3 is the highest priority to be used for “time-critical” threads. The remaining priority levels
provide some additional amount of control over which thread gets the bone first.

While some “special effects” can be achieved with Windows’ more exotic priority values,
for typical usage a policy of 0 with zero priority should be employed for ordinary threads,
a policy of 1 with some (small) positive priority value for a thread with moderate realtime
requirements, and a policy of 2 if time is very critical. If you follow these conventions then
your script will be able to run under Windows and most UNIX systems unchanged.
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12.12.3 Mutexes

Clib mutexes come in three flavours: fast (no error checking), error checking (fail if the
current thread already holds a lock on the mutex) and recursive (the same thread may lock
the mutex multiple times, and the same number of unlock operations is required to unlock
the mutex again). The supported operations are lock (wait for the mutex to be unlocked,
then lock it and return ()), unlock (unlock the mutex, return ()) and try (lock the mutex
if it is available, fail otherwise).

CAVEAT: These operations are dangerous, as you can easily create deadlocks which
might lock up the interpreter as well. Note that a deadlock will also prevent the involved
threads from being canceled since, in accordance with the POSIX standard, the wait for a
mutex lock is not a cancellation point. Thus these operations should be used with care.

Since Q has no mutable variables and the interpreter’s builtins are all thread-safe, mu-
texes are actually used much less in Q than in other, procedural languages. They are most
useful for protecting critical sections in which a sequence of operations with side-effects
(such as I/O) is to be carried out in an atomic fashion. This can be done by locking a
mutex at the beginning and unlocking it at the end of the sequence. Such usage is safe,
provided that no operation in the sequence may block for an extended or even indefinite
period of time.

public extern type Mutex; // mutex type

public ismutex MUTEX; // check for mutex objects

public extern mutex; // standard (fast) mutex object
public extern errorchecking_mutex; // error checking mutex object
public extern recursive_mutex; // recursive mutex object

public extern lock MUTEX; // lock MUTEX
public extern unlock MUTEX; // unlock MUTEX
public extern try MUTEX; // try MUTEX

12.12.4 Conditions

Clib conditions support the following operations: signal (wake up one thread waiting
for the condition), broadcast (wake up all threads waiting for the condition) and await
(suspend the current thread until the condition is sent). Each of these operations returns
(). The await operation can also be invoked with a (COND, TIME) tuple to denote a timed
wait. If the wait times out or is interrupted by a signal then the operation fails. Note that
in accordance with the POSIX standard the TIME value denotes an absolute time (integer
or floating point value in seconds since the “epoch”, see also the description of the builtin
time function in Section 10.7 [Miscellaneous Functions], page 90).

public extern type Cond; // condition type

public iscond COND; // check for condition objects

public extern cond; // new condition object
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public extern signal COND; // signal COND
public extern broadcast COND; // broadcast COND
public extern await COND; // wait for COND, or (COND,TIME)

12.12.5 Semaphores

Clib semaphores are in fact semaphore queues which can be used as a a communication
channel to pass values between different threads using a FIFO discipline. In extension to the
POSIX 1003.1b semaphore operations, clib also provides support for bounded semaphores
which are created with a positive limit on the number of values the semaphore queue may
hold at any time. When a new value is posted to a bounded semaphore, the current thread
is suspended until the queue has room to receive a new value, if necessary.

The supported operations are post (enqueue a value), get (dequeue a value and return
it, as soon as one is available), try (non-blocking version of get which fails if no value is
currently available), get_size or # which both return the current queue size, and get_
bound which returns the queue size limit of a bounded semaphore (or zero if the semaphore
is unbounded).

Note that even with unbounded semaphores the maximum semaphore size is actually
limited by the operating system, see your local POSIX threads documentation for details.
If this implementation-specific limit is exceeded, the attempt to post a new value raises a
syserr 9 exception.

public extern type Sem; // semaphore type

public issem SEM; // check for semaphore objects

public extern sem; // semaphore object
public extern bounded_sem MAX; // bounded semaphore object

public extern post SEM X; // enqueue a value
public extern get SEM; // dequeue a value
public extern try SEM; // dequeue a value, fail if none

public extern get_size SEM; // get the current queue size
public extern get_bound SEM; // get the max queue size (0 if none)

12.12.6 Threads and Signals

Some remarks about the interaction between clib threads and the interpreter’s signal
handling are in order. It is a well-known fact that threads and signals generally do not mix
very well. Therefore, in the current implementation, all signal handling is actually performed
in the interpreter’s main thread. This is where you should set up your signal handlers using
the trap and catch builtins, as explained in Section 10.6 [Exception Handling], page 86. If
necessary, the main thread of your script can inform other threads about received signals
using the thread synchronization functions described above.
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However, the interpreter still allows you to set up traps in secondary threads and keeps
track of the configured traps separately for each thread. The traps in secondary threads will
not have any effect until such a thread forks (see Section 12.7 [Process Control], page 130).
In this case the forking thread will be the one and only thread in the child process and
becomes the main thread. At this point, it takes on the signal handling, and any traps
which have been set up before become active. (Note that in order to make this work
reliably, you should configure the traps before you call fork and protect the call to fork
with an enclosing catch. Otherwise a signal might arrive in the time between the fork and
the next function call, causing the new process to exit before it had a chance of setting up
its own signal handling.)

12.12.7 Thread Examples

As already mentioned, threads allow you to perform a lengthy calculation as a back-
ground task. You can start such a task simply as follows:

==> def TASK = thread (sum (nums 1 1000000))

==> // do some other work ...

==> result TASK // get the result
500000500000

==> stats all
thread #0: 0 secs, 1 reduction, 0 cells
thread #1: 8.42 secs, 2000003 reductions, 2000007 cells

As indicated, if the stats command is invoked with the parameter all then it also
shows the statistics of background threads once they are finished. To release all resources
associated with a thread (and also remove it from the stats all list) you must undefine
all variables referencing the thread handle:

==> undef TASK

Conditions are useful when a thread has to wait for some condition before proceeding
with a computation. E.g.:

==> def COND = cond, TASK = thread (await COND || writes "Got it!\n")

==> signal COND
()
Got it!

Semaphores are used when expression values have to be passed from one thread to
another. For instance, let us rewrite the backtracking algorithm for the N queens problem
(see Section 10.6 [Exception Handling], page 86) such that it runs as a background task
which returns results via a semaphore instead of printing them directly on the terminal:

def RES = sem; // semaphore used to transmit results

queens N = thread (search N 1 1 [] || post RES ());
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search N I J P = post RES P if I>N;
= search N (I+1) 1 (P++[(I,J)]) || fail if safe (I,J) P;
= search N I (J+1) P if J<N;
= () otherwise;

Note that we added a post RES () to signal that all solutions have been found. The
safe function is as in Section 10.6 [Exception Handling], page 86. We also remark that
in order to limit the size of the RES semaphore queue, we could use a bounded semaphore
instead, e.g.:

def RES = bounded_sem 10;

We can use a second thread to process the semaphore queue and print solutions as they
become available:

print = thread (loop print1 RES);

print1 () = return (); // no more results
print1 P = write P || writes "\n" otherwise;

/* iterate a function over a semaphore */

loop F SEM = F (get SEM) || loop F SEM;

To use this program, simply start the two background tasks as follows:

==> def QUEENS = queens 8, PRINT = print

Both threads will begin to execute immediately, and you will see the results scroll by.
Once the threads are finished, you can check the resources used by each thread with the
stats all command:

==> stats all
thread #0: 0 secs, 2 reductions, 2 cells
thread #1: 1.71 secs, 700451 reductions, 943 cells
thread #2: 0 secs, 461 reductions, 3 cells

Also note that here we used again a def statement to assign the thread handles to
corresponding variables. It is important that you keep these variables as long as you want
the threads to survive. The interpreter automatically cancels a thread as soon as the
corresponding thread handle is garbage collected. Hence you can stop the threads at any
time by simply undefining the variables using, e.g., the clear command.

12.13 Expression References

Expression references work like pointers to expression values. The reference is initialized
with the ref function, giving the initial value as an argument. The referenced value can
then be changed with the put function and retrieved with get.

public extern type Ref; // reference type

public isref REF; // check for reference objects
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public extern ref X; // initialize a reference object

public extern put REF X; // store a new value
public extern get REF; // retrieve the current value

NOTE: References can point to arbitrary values, in particular they can also point to
other references. Cyclic chains of references are also supported, but should be avoided since
in the current implementation the interpreter cannot garbage-collect such structures.

References can be used to implement mutable data structures. This is particularly useful
if a function has to maintain some internal state to perform its calculations. For instance,
here is a function which memorizes past function calls in a hash table so that each requested
value only has to be computed once:

def HASH = ref emptyhdict;

public hashed F X;
hashed F X = get HASH!(F,X) if member (get HASH) (F,X);

= put HASH (update (get HASH) (F,X) Y) || Y
where Y = F X otherwise;

Using the hashed function, a hashed version of the recursive Fibonacci function can be
implemented as follows. Since no value of the function is computed more than once, the
definition works in linear time (up to logarithmic factors for the table updates and lookups).
In fact, even an expression like map fib (nums 0 N) will only require a linear number of table
manipulations and other operations.

fib = hashed fib2;

fib2 0 = 0;
fib2 1 = 1;
fib2 N = fib (N-1)+fib (N-2) if N>1;

References also provide a general means for communicating values in a multithreaded
script (see Section 12.12 [POSIX Threads], page 147). In this case they are typically used
together with a condition which is signaled when the value changes:

def VAL_CHANGED = cond, VAL = ref ();
change X = put VAL X || broadcast VAL_CHANGED;

A loop like the following might then be executed by any number of other threads which
have to keep track of the value in question, and perform some appropriate action when the
value changes:

watch = await VAL_CHANGED || action (get VAL) || watch;

12.14 Time Functions

The functions described in this section are used to return information about the active
timezone and the current time, and convert time values to various formats. Also available
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are functions to measure cpu time. These functions are in close correspondence with the
date and time functions of the C library.

The calendar date and time functions use two different representations for time values:

• Simple time (denoted T in the sequel) is represented as the number of seconds elapsed
since the “epoch”, 00:00:00 on January 1, 1970, UTC.

• Broken-down time (denoted TM) is encoded as a 9-tuple (YEAR, MONTH, DAY, HOUR,
MIN, SEC, WDAY, YDAY, ISDST). See the description of the tm struct in the ctime(3)
manual page for more information.

Three functions (tzname, timezone, daylight) are provided to return information about
the current timezone and daylight savings settings. The gmtime and localtime functions
convert simple time to broken-down time using UTC or the local timezone, respectively.
The functions mktime and asctime are used to convert a broken-down time value into a
simple time value or the standardized string representation used by the date(1) program,
respectively. The ctime function combines localtime and asctime. For more flexible
formatting of time values, the strftime function can be used, which takes as its first
argument a format string as described on the strftime(3) manual page.

public extern tzname, timezone, daylight;
public extern ctime T, gmtime T, localtime T;
public extern mktime TM, asctime TM, strftime FORMAT TM;

The components of broken-down time. can be accessed with the following functions:

public tm_year TM, tm_month TM, tm_day TM, tm_hour TM, tm_min TM,
tm_sec TM, tm_wday TM, tm_yday TM, tm_isdst TM;

On the current 32 bit systems time values must be representable as 4 byte integer values,
which means that the available range usually goes from "Fri Dec 13 20:45:52 1901" to
"Tue Jan 19 03:14:07 2038". (This will probably be fixed before “time ends” on current
UNIX systems in January 2038, though.)

Some examples:

==> tzname; timezone; daylight
("CET","CEST")
-3600
1

==> ctime time
"Mon Mar 17 04:08:29 2003\n"

==> localtime time
(103,2,17,4,8,41,1,75,0)

==> strftime "Hey it’s %c" _
"Hey it’s Mon Mar 17 04:08:41 2003"

==> ctime (st_mtime (stat "README-Clib"))
"Wed May 1 16:59:00 2002\n"
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Two additional functions are provided for measuring cpu time. Note that clock and
times measure cpu time in different units, given by the constants CLOCKS_PER_SEC and CLK_
TICK, respectively. The times function returns a 5-tuple (TOTAL, UTIME, STIME, CHILD_
UTIME, CHILD_STIME). See times(2) for details.

public extern clock, times;

For instance, you can calculate the cpu time in seconds it takes to evaluate an expression
by computing the difference between the clock time at the end and at the beginning, divided
by CLOCKS_PER_SEC:

==> -(clock - (prd (nums 1 10000) || clock)) / CLOCKS_PER_SEC
0.14

Note that the initial value and the resolution of the clock timer is system-dependent.
Usually the timer is initialized at process creation time, but that is not guaranteed. More-
over, the value of clock typically is a machine integer which wraps around after a finite
time interval; on 32 bit systems with CLOCKS_PER_SEC = 1000000, as recommended by the
POSIX standard, this happens approximately every 72 minutes.

12.15 Filename Globbing

Matching filenames against patterns with shell wildcards (*, ? etc.), also known as
filename “globbing”, is implemented by the following functions:

public extern fnmatch PATTERN S; // check whether S matches PATTERN
public extern glob PATTERN; // list of all filenames matching PATTERN

Examples

==> map (fnmatch "*.q") ["clib.q","clib.c"]
[true,false]

==> map (fnmatch "*.[cq]") ["clib.q","clib.c"]
[true,true]

==> glob "*.[qc]"
["clib.c","clib.q","factor.q","globexamp.q","regexamp.q"]

==> glob "/h*"
["/home"]

Only a single pattern is accepted by both fnmatch and glob. However, it is a simple
matter to provide your own rules which extend the clib operations to lists of patterns:

fnmatch [] S:String = false;
fnmatch [P:String|Ps] S:String

= fnmatch P S or else fnmatch Ps S;

glob Ps:List = rmdups (sort (<) (cat (map glob Ps)));
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rmdups [] = [];
rmdups [X,X|Xs] = rmdups [X|Xs];
rmdups [X|Xs] = [X|rmdups Xs] otherwise;

Note that in our extension of the definition of glob we employ the sort function (see
Section 12.18 [C Replacements for Common Standard Library Functions], page 168) to sort
the resulting list, and then remove adjacent duplicates (which could occur because a file
may match more than one pattern).

Now let’s see these definitions in action:

==> map (fnmatch ["*.q","*.c"]) ["clib.q","clib.c"]
[true,true]

==> glob ["*.q","*.c","clib.*"]
["clib.c","clib.q","clib.so","factor.q","globexamp.q","regexamp.q"]

12.16 Regular Expression Matching

The clib module implements regular expression matching using the POSIX regcomp and
regexec functions provided by the GNU regex library. Regular expressions are generally
specified using the extended (egrep-like) syntax. Clib divides the matching functions
into two interfaces, the high-level interface (regex function) and the low-level interface
(regmatch and friends). Both interfaces are used with a third group of match state functions
(reg and friends) which provide access to information about the current match.

For most purposes, the high-level regex function should be all that is needed. However,
the low-level functions are provided so that you can create your own specialized regular
expression engines, should you ever need to do so. In this case you might wish to take a
look at the definition of the regex function in clib.q and modify it to suit your needs.

Note that in accordance with POSIX matching semantics, all matching functions search
for an occurrence of the pattern in the target string, rather than simply checking whether
the whole string matches the given pattern. If the latter functionality is required, you can
use ^ and $ to tie the match to the beginning and the end of the string.

12.16.1 High-Level Interface

The following functions are implemented as special forms, with the EXPR argument being
passed unevaluated.

special regex ~OPTS ~REGEX ~S EXPR, regex_next EXPR;

The regex function evaluates, for each match of the given regular expression (also called
the pattern) in the given string, the special EXPR argument, and returns the collection of
all results as a list, in the order in which the matches were found. If no match is found,
the result list will be empty. The EXPR argument typically uses the match state functions
(see Section 12.16.3 [Match State Information], page 159) to retrieve the current match
information. You can also invoke the regdone function (see Section 12.16.2 [Low-Level
Interface], page 158) to escape from the search at any time.
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The regex_next function is used internally by regex to iterate over all subsequent
matches; normally it is not invoked directly by the user.

Matching generally proceeds from left to right, and if several different substrings match
at a given position, the longest match is preferred. The matching process is controlled by
means of the OPTS string argument, which may contain zero or more of the following option
characters (the corresponding flags of the POSIX regcomp/regexec functions are given in
parentheses, where applicable):

g Match globally, i.e., find all non-overlapping occurrences. Otherwise only the
first match is reported (if any).

G Like g, but report overlapping matches as well.

i Do case-insensitive matches (REG_ICASE).

n Do multi-line matches. This makes ^ and $ match line beginnings and ends
(besides beginning and end of the string), and makes . and lists [...] not
match the newline character, unless it is explicitly included in a list (REG_
NEWLINE).

^ Do not match ^ at the beginning of the string (REG_NOTBOL).

$ Do not match $ at the end of the string (REG_NOTEOL).

Abnormal error conditions such as bad regular expression syntax are handled by return-
ing an expression of the form regerr MSG where MSG is a string describing the error. You
may give an appropriate definition of regerr, or check for literal regerr MSG values, to
handle such error conditions in any way you like.

The regex function is clib’s primary interface to perform regular expression matching,
and should cover most usual applications. You can find a number of examples showing how
to use this function below (see Section 12.16.4 [Basic Examples], page 160). The regex
function itself is implemented in Q using the low-level functions discussed in the following
section. You might wish to take a look at these if you need to do something special which
cannot be done with the regex function (or cannot be done in an efficient manner).

12.16.2 Low-Level Interface

The following functions are written in C using the GNU regex library.

public extern regmatch OPTS REGEX S, regnext, regdone;

The regmatch function searches for the first (i.e., leftmost) occurrence of the regular
expression pattern in the given string, and the parameterless regnext function searches
for the next occurrence. Both functions normally return a truth value indicating success
or failure (but see the remarks concerning error handling below). In case of success, you
can retrieve the current match using the match state functions (see Section 12.16.3 [Match
State Information], page 159).

IMPORTANT: These functions have side-effects; they change the internal match state
which is accessed using the match state functions (see Section 12.16.3 [Match State In-
formation], page 159). This hidden state is provided for your convenience, to spare you
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the trouble of having to pass explicit parameters between the matching operations and the
match state functions. All match state information is maintained on an internal stack, so
that you can start a new search with the regmatch function while another one is still in
progress. (This also implies that you can recursively invoke regex inside the EXPR argument
of a regex call.)

The OPTS argument has the same meaning as for the regex function, and error han-
dling also works in the same fashion. That is, in case of an abnormal error condition the
regmatch/regnext functions return a regerr MSG expression instead of a truth value. See
Section 12.16.1 [High-Level Interface], page 157.

Note that the regnext function will always return false, unless one of the g/G (global
search) options is specified in the preceding regmatch call.

To terminate a (global) search which is still in progress (i.e., has not failed yet), you can
call the regdone function, which always returns (). Subsequent invokations of the match
state functions will then behave just like after a failing regmatch/regnext call. (After a
failed match, regdone is not needed; it will be invoked automatically.)

Some care is needed to ensure proper operation of the low-level routines with multiple
nested searches. As a general rule, each search successfully started with regmatch must be
terminated either with a failing regnext call, or by an invokation of the regdone function.
In both cases, after termination of the nested search, a subsequent regnext will continue
where regmatch/regnext left off when the nested search was started.

It is important to note that these rules also apply if the search is non-global. The main
rationale behind this behaviour is that, even if one is only interested in the first match,
one must still be able to obtain information about any trailing unmatched text using the
regstart/regskip functions (see Section 12.16.3 [Match State Information], page 159), and
this information is only available after a match has failed (or was aborted using regdone).
Thus the interface functions should always behave consistently, no matter whether the g/G
option was specified or not. (In fact, the only difference g/G makes is that, if it is omitted,
then regnext will pretend that no next match is available even if there is one.)

If this sounds confusing to you, just stick with the high-level regex function which takes
care of all those messy details. A nested matching example using regex is discussed in
Section 12.16.9 [Nested Searches], page 165.

12.16.3 Match State Information

These functions are typically invoked after regmatch, regnext, or in the EXPR argument
of regex, to report information about the current match.

public extern regstart, regskip, reg N, regpos N, regend N, regs;

The reg function returns the text of a match, regpos its beginning in the target string
(first character position), and regend its end (first position behind the match). These
functions take an integer argument denoting the group (a.k.a. parenthesized subexpression)
of the regular expression being matched. An argument of 0 always refers to the whole
match, N > 0 to the text matched by the Nth group (counting opening parentheses from
the left). The match reported for a given group will always extend to the right as far as
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possible (“longest match”), subject to the constraint that enclosing groups will also prefer
the longest match, and they always take priority. Thus reg 0 will extend to the right as far
as possible, reg 1 will be the longest possible match for group 1 inside this match, etc.

If a group belongs to a repetitive pattern (patterns involving the *, + operators, etc.),
then it may be matched more than once. In this case, the text last matched by the group
is reported by the reg/regpos/regend functions.

If the group belongs to an optional part of the pattern (*, ?, different alternatives with
|), then the group might not be matched at all. For such unmatched groups, regpos and
regend both return -1 and reg returns the empty string. These values are also returned
for all groups (including 0) after a match has failed or has been aborted using the regdone
function.

The regs function returns a list with the indices of all matched groups (except 0).

The parts of the target string which were not matched can also be accessed. This is done
by means of the regstart and regskip functions, which return, respectively, the position
where the last search for a match started, and the text from this position up to the following
match (or to the end of the string if the match failed). These values can also be accessed
after a failing or aborted match (e.g., after regex has finished), which is useful to determine
a trailing unmatched portion in the input string.

12.16.4 Basic Examples

Please refer to your UNIX manual for a description of the regular expression syntax.
(To get a start, take a look at the egrep(1) manual page; most of what it has to say about
(extended) regular expressions should be applicable here too. There are also some good
books on the subject.)

So let’s consider some elementary examples first. Here’s how we can find all occurrences
of “identifiers” (defined here as sequences of letters and digits, starting with a letter) in a
string:

==> regex "g" "[A-Za-z][A-Za-z0-9]*" "1var foo 99 BAR $%&" (reg 0)
["var","foo","BAR"]

The first argument to regex is always the option string; the "g" in our example indicates
a global search, i.e., a search for all (non-overlapping) matches of the given pattern. The
second argument is the regular expression pattern to be matched, and the third argument
is the string to be searched for matches against the pattern. The fourth argument is the
expression to be evaluated for each match; in our case, reg 0 is used to simply retrieve
the match. Actually, we could provide any appropriate expression here, e.g., we might use
sprintf to add some fancy formatting:

==> regex "g" "[A-Za-z][A-Za-z0-9]*" "1var foo 99 BAR $%&" \
(sprintf "MATCH: %s" (reg 0))
["MATCH: var","MATCH: foo","MATCH: BAR"]

What happens if the pattern contains an error, such as an unmatched bracket? Let’s
see:
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==> regex "g" "[A-Za-z][A-Za-z0-9*" "1var foo 99 BAR $%&" (reg 0)
regerr "Unmatched [ or [^"

Reasonably enough, regex returns an error message.

The regex function always enumerates matches from left to right, and only reports at
most one match for each position in the input string. If more than one substring matches
at a given position, the longest match is preferred. Thus in the above example, e.g., foo
is matched, and not the individual characters f and o which by themselves also match the
given pattern.

Note that with the g option only non-overlapping matches are reported; if we want all
occurrences (even overlapping ones) then we specify the G option instead:

==> regex "G" "[A-Za-z][A-Za-z0-9]*" "1var foo 99 BAR $%&" (reg 0)
["var","ar","r","foo","oo","o","BAR","AR","R"]

And if we are only interested in the first match, we simply omit the g/G option character:

==> regex "" "[A-Za-z][A-Za-z0-9]*" "1var foo 99 BAR $%&" (reg 0)
["var"]

So far, so good. After these basics, let’s reconsider our original search expression:

==> regex "g" "[A-Za-z][A-Za-z0-9]*" "1var foo 99 BAR $%&" (reg 0)
["var","foo","BAR"]

We can simplify the pattern somewhat if we use the i option to specify a case-
independent search:

==> regex "gi" "[a-z][a-z0-9]*" "1var foo 99 BAR $%&" (reg 0)
["var","foo","BAR"]

Another way to write this pattern uses the predefined character classes [:alpha:] and
[:alnum:]; these constructs have the advantage that they are portable, i.e., they work in
different character sets and locales.

==> regex "g" "[[:alpha:]][[:alnum:]]*" "1var foo 99 BAR $%&" \
(reg 0)
["var","foo","BAR"]

So now we know how we can find identifiers in a string. But what if we have to check
whether a given string is an identifier? For this purpose, we must match the string as a
whole against the pattern. We can do this by tying our pattern to the beginning and end
of the string using the ^ and $ “anchors”. (The g option is not required here, since we are
only looking for a single match.)

==> regex "" "^[[:alpha:]][[:alnum:]]*$" "foo" (reg 0)
["foo"]

==> regex "" "^[[:alpha:]][[:alnum:]]*$" "1var" (reg 0)
[]

If we only want a truth value, we can simply test the size of the result list; in this case,
any expression argument will do:
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==> 1=#regex "" "^[[:alpha:]][[:alnum:]]*$" "foo" ()
true

==> 1=#regex "" "^[[:alpha:]][[:alnum:]]*$" "1var" ()
false

12.16.5 Empty and Overlapping Matches

Empty matches are permitted as well, subject to the constraint that at most one match
is reported for each position (which also prevents looping). And of course an empty match
will only be reported if nothing else matches. For instance:

==> regex "g" "" "foo" (regpos 0)
[0,1,2,3]

==> regex "g" "o*" "foo" (regpos 0)
[0,1,3]

(The usefulness of such constructs might be questionable, but see Section 12.16.7 [Per-
forming Replacements], page 163, for a reasonable example.)

As already mentioned, only non-overlapping matches are reported with the g option.
However, occasionally it might be useful to also determine overlapping matches, and for
this purpose the G option is provided. For instance, suppose that we want to produce a
table showing which letters follow another given letter in a text. The first step is to produce
a list of all pairs of adjacent letters, and since we really need all pairs here, we employ the
G option:

==> regex "G" "[[:alpha:]]{2}" "silly" (reg 0!0,reg 0!1)
[("s","i"),("i","l"),("l","l"),("l","y")]

Now it is an easy matter to collect the desired information using, e.g., a dictionary and
a little bit of “list voodoo:”

==> def add = lambda D (lambda (X,Y) (update D X (insert (D!X) Y)))

==> def D = foldl add (mkdict emptyset (map fst _)) _

==> zip (keys D) (map list (vals D))
[("i",["l"]),("l",["l","y"]),("s",["i"])]

12.16.6 Splitting

In previous examples we saw how we can tokenize a string by matching its constituents
(see Section 12.16.4 [Basic Examples], page 160). Sometimes one also has to go the other way
round, i.e., split a string into arbitrary tokens separated by “non-tokens”. E.g., we might
want to split a string into tokens delimited with whitespace, which can be described by
an expression like "[ \t\n]+", or, in a locale-independent fashion, using "[[:space:]]+".
To do this with the regex function, we must find all text that is between matches, and
any trailing text after the last matched delimiter. The regskip function lets us do this as
follows:
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==> regex "g" "[[:space:]]+" "The little\t brown\n fox." regskip \
++ [regskip]
["The","little","brown","fox."]

Here the regskip expression argument to regex is used to access the intervening tokens,
and the final ++ [regskip] appends the last token.

We can use this method to define our own little regular expression tokenizing function
as follows:

regsplit OPTS REGEX S = regex OPTS REGEX S regskip ++ [regskip];

With this definition, the above example works as follows:

==> regsplit "g" "[[:space:]]+" "The little\t brown\n fox."
["The","little","brown","fox."]

We could also omit the g option, in which case only the first delimiter match is used as
a splitting point:

==> regsplit "" "[[:space:]]+" "The little\t brown\n fox."
["The","little\t brown\n fox."]

Splitting with an empty or optional pattern also works as expected:

==> regsplit "g" "" "some text"
["","s","o","m","e"," ","t","e","x","t",""]

==> regsplit "g" " ?" "some text"
["","s","o","m","e","","t","e","x","t",""]

12.16.7 Performing Replacements

A similar idea is also used to replace matches with new text. You can define a substitution
function, which replaces each match with the result of an expression, as follows:

special regsub ~OPTS ~REGEX ~S EXPR;
regsub OPTS REGEX S EXPR = strcat (regex OPTS REGEX S (regskip++EXPR))

++ regskip;

For instance:

==> regsub "g" "[[:alpha:]][[:alnum:]]*" "1var foo 99 BAR $%&" \
(sprintf "-*-%s-*-" (reg 0))
"1-*-var-*- -*-foo-*- 99 -*-BAR-*- $%&"

As usual, if we only want to replace the first match, we can omit the g option:

==> regsub "" "[[:alpha:]][[:alnum:]]*" "1var foo 99 BAR $%&" \
(sprintf "-*-%s-*-" (reg 0))
"1-*-var-*- foo 99 BAR $%&"

And here’s an example showing empty and optional patterns at work:

==> regsub "g" "" "some text" " "
" s o m e t e x t "
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==> regsub "g" " ?" "some text" ":"
":s:o:m:e::t:e:x:t:"

12.16.8 Submatches

It is also possible to access the parts of matches, called “groups”, which are defined by
parenthesized subexpressions of the regular expression. Groups are numbered starting at 1,
counting opening parentheses from the left. The text matched by a group can be accessed
using reg N where N is the group number.

For instance, suppose we want to parse environment lines, such as those returned by the
shell’s set command. We assume that each line with a definition looks like VARIABLE=VALUE,
which can be described by the pattern "^([^=]+)=(.*)$", in which group 1 denotes the
variable and group 2 the value. Thus we can obtain the parts of a definition using a regex
search like the following:

==> regex "" "^([^=]+)=(.*)$" "VARIABLE=VALUE" (reg 1,reg 2)
[("VARIABLE","VALUE")]

We can turn this into an env function which returns the current environment as a list
of (variable,value) pairs as follows. Here, we use the fget function to read in the whole
environment as a single string from a pipe opened on the set command. The environment
string is then parsed using the n option of regex, which makes the ^ and $ anchors match
the beginning and end of each line, respectively.

env = regex "gn" "^([^=]+)=(.*)$" envget (reg 1,reg 2);

envget = fget (popen "set" "r");

Given these definitions, we can now get hold of the whole environment and, e.g., turn
it into a dictionary which can be accessed in a convenient fashion using the functions from
the dict.q standard library module:

==> def envdict = dict env

==> envdict!"SHELL"
"/bin/bash"

When a pattern consists of multiple alternatives, such as "(foo)|(bar)", then some of
the groups might participate in a match, while others don’t. You can check whether a group
matched by testing the corresponding regpos value. If the value is nonnegative, then the
group matched; otherwise (the value is -1) it didn’t. You can also use the regs function to
determine the list of all groups that matched. For instance:

==> regex "" "(foo)|(bar)" "foo" (regpos 1,regpos 2)
[(0,-1)]

==> regex "" "(foo)|(bar)" "bar" regs
[[2]]
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So here’s a simple way to implement a lexical analyzer which distinguishes between dif-
ferent kinds of tokens. For example, let us tokenize identifiers and integers, skip whitespace,
and return all remaining characters as literals.

def SYN = "([[:alpha:]][[:alnum:]]*)|(-?[[:digit:]]+)|([^[:space:]])";
def TOK = (none,ident,num,id);

toks S = regex "g" SYN S ((TOK!(hd regs)) (reg (hd regs)));

Note that the literal characters are mapped to the standard library id function, the
identity operation. Hence these characters are represented by themselves, whereas other
tokens are denoted by appropriate constructor terms, ident S and num S in our example,
which contain the actual text of the token as arguments. Let’s see this in action:

==> toks "foo -99; bar 99;"
[ident "foo",num "-99",";",ident "bar",num "99",";"]

The token sequence is now ready to be processed by a higher-level routine such as a
parser, but this is another story which will be told another time . . .

Yet another way to employ submatches are the back references. You can specify that a
group is to be repeated by using the notation \N, where N is a single digit between 1 and 9,
in the regular expression argument. For instance, regex "g" "([ab]+)\\1" will match all
substrings which have two consecutive identical sequences of a’s and b’s.

Back references add considerably to the matching complexity (some matches may take
exponential time) and hence should be avoided. In fact, it can be shown that regular
expression matching with back references is NP-complete.

12.16.9 Nested Searches

Regular expression searches can also be nested, by invoking the regex function recur-
sively in the expression argument of another regex call. This is useful, e.g., if regex is used
to tokenize a string, and we want to further analyze the individual tokens. We could do this
by mapping a regex call to the finished token list, but it may be more efficient to perform
the second search right away on each individual token. Here’s an abstract example, which
finds all substrings delimited by c’s, and counts the number of consecutive a’s and b’s in
them:

==> regex "g" "[^c]+" "abbacbaaca" \
(regex "g" "a+|b+" (reg 0) (reg 0!0,#reg 0))
[[("a",1),("b",2),("a",1)],[("b",1),("a",2)],[("a",1)]]

12.17 Additional Integer Functions

The Q interpreter implements basic integer arithmetic using the GMP (GNU multipreci-
sion) library. With the clib module you also get some of the more advanced GMP routines,
namely integer powers and roots, and various number-theoretic functions.
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12.17.1 Powers and Roots

public extern pow M N, root M N, intsqrt M;

These functions compute (exact) powers and (integer parts of) roots of integers. The
results are always integers; roots are truncated to the largest integer below the exact root
value. The pow function computes the Nth power of M (N >= 0), root the integer part of the
Nth root of M (M >= 0, N > 0), and intsqrt the integer part of the square root of M >= 0.

public extern powmod K M N, invmod K M;

The powmod function returns the (smallest nonnegative) Nth power of M modulo K, where
K must be nonzero. This function is much more efficient than pow M N mod K if N is large.
The invmod function computes the (smallest positive) multiplicative inverse of M modulo
K (if it exists, i.e. if M is nonzero and relatively prime to K). In other words, invmod K M
returns a number N in the range 1..K-1 s.t. M*N = N*M = 1 modulo K.

12.17.2 Prime Test

public extern isprime N;

The isprime function implements the Miller-Rabin algorithm for probabilistic prime
testing. If isprime N (where N > 1 is an integer) returns true or false, then N is surely
prime or composite, respectively. If the function fails, then the number is composite with
a probability of only (1/4)^ISPRIME_REP, where the ISPRIME_REP variable denotes the
number of repetitions of the probabilistic prime test.

To avoid the overhead of checking ISPRIME_REP each time the isprime function is in-
voked, isprime determines the value of the variable once, at the time of its first invokation.
Thus, if you set this value, make sure to set it before you call isprime for the first time.
Reasonable ISPRIME_REP values vary from 5 to 10; if the variable is not set when isprime
is first called, a default value of 5 is used, which means that the probability of isprime
failing on a composite will be 1/1024.

When using this function, your script should provide an appropriate default definition
which handles the case that the isprime operation of this module fails. There are basically
three different ways to cope with a failing isprime call. First, you can make your program
abort, e.g., using an “error rule” like the following:

isprime N:Int = error "Prime test failed!";

Given that the test will probably not fail very often, this might be a viable option – you
can always run your script again and hope that it finishes successfully, since the probabilistic
test will choose different random parameters each time it is invoked.

Second, you can pretend that the prime test succeeded by providing the definition:

isprime N:Int = true;

With this definition there will be a small probability that you mistake a composite for a
prime, but for some algorithms this might be tolerable.
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Third, you can play safe by providing your own primality test which catches those few
cases when the probabilistic test fails. For instance, employing the usual trial division
method:

isprime N:Int = true if N = 2;
= false if N and 1 = 0; // even number
= try_div 3 (intsqrt N) N otherwise;

try_div L M N = true if L > M;
= false if N mod L = 0;
= try_div (L+2) M N otherwise;

Of course such an exhaustive search will take a long time for big numbers, but this might
be acceptable if the default rule is not invoked very often.

12.17.3 Other Number-Theoretic Functions

public extern gcd M N, lcm M N;

These are the usual greatest-common-divisor and least-common-multiple functions. The
gcd will always be positive, and the lcm will have the same sign as the product.

public extern fact M N, rem M N;

The fact and rem functions are used to help in factoring. The fact function returns
the multiplicity of N in M (i.e., the maximum L s.t. pow N L divides M), and rem removes all
N factors from M, i.e., rem M N = M div pow N (fact M N). Both functions require that M is
nonzero and N positive.

public extern jacobi M N;

This function computes the Jacobi symbol M over N, which can be used to find quadratic
residues of an odd prime. M can be an arbitrary integer, but N must be positive; the value of
the function is always 1, 0 or -1, where the value 0 indicates that gcd M N > 1. In the case
of an odd prime N, we have that jacobi M N = 1 iff M is a nonzero quadratic residue modulo
N.

12.17.4 Examples

Determine all invertible numbers modulo 9 and their corresponding inverses:

==> filter (lambda (X,Y) (isnum Y)) \
(zip (nums 1 8) (map (invmod 9) (nums 1 8)))
[(1,1),(2,5),(4,7),(5,2),(7,4),(8,8)]

Check the result:

==> map (lambda (X,Y) (X*Y mod 9)) _
[1,1,1,1,1,1]

Find all (nonzero) quadratic residues modulo 7:

==> filter (lambda X (jacobi X 7 = 1)) (nums 1 6)
[1,2,4]
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Decompose 858330 into prime factors (brute force):

==> def N = 858330, P = filter isprime (nums 2 N)

==> filter (lambda (X,Y) (Y>0)) (zip P (map (fact N) P))
[(2,1),(3,3),(5,1),(11,1),(17,2)]

Well, that’s probably not the right way to do it. So here’s a reasonable factorization
algorithm, using both fact and rem. This method is a lot faster – but still not fast enough
for code breaking.

factor 0 = [];
factor N:Int = factor (-N) if N<0;

= [(2,fact N 2)|factor_from 3 (rem N 2)]
if N and 1 = 0; // even number

= factor_from 3 N
otherwise;

factor_from P N = [] if P > N;
= [(P,fact N P)|factor_from (P+2) (rem N P)]

if N mod P = 0; // P divides N (must be prime)
= factor_from (P+2) N

otherwise; // not a factor, try the next one

For instance, try the following:

==> factor 807699854836875
[(3,1),(5,4),(7,2),(11,5),(13,2),(17,1),(19,1)]

Check the result:

==> prd (map (lambda (X,Y) (pow X Y)) _)
807699854836875

12.18 C Replacements for Common Standard Library
Functions

Last not least, the clib module also provides “builtin” replacements for various standard
library functions:

public extern stdlib::append Xs Y, stdlib::cat Xs, stdlib::mklist X N,
stdlib::nums N M, stdlib::numsby K N M, stdlib::reverse Xs,
stdlib::tuplecat Xs;

public extern string::chars S, string::join DELIM Xs,
string::split DELIM Xs, string::strcat Xs;

These functions are much more efficient, both in running time and memory requirements,
than the “standard” definitions in stdlib.q and string.q, and improve the performance
of many common list and string processing tasks. In some cases, the provided operations
are even several orders of magnitude faster. In particular, the standard definitions of the
cat, strcat and tuplecat operations are very slow in comparison, because they are imple-
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mented using repeated concatenation and hence take quadratic running time. In contrast,
all functions provided here are guaranteed to run in linear time.

A faster sorting routine is provided as well:

public extern sort P Xs;

This function works like the msort and qsort operations provided by the sort.q module,
but is implemented using the quicksort routine from the C library. Note that, in difference
to msort/qsort, the sort function does not perform stable sorting, so you still have to use
msort or qsort if this feature is required.
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Appendix A Q Language Grammar

This appendix summarizes the syntactical rules of the Q language. Please refer to
Chapter 3 [Lexical Matters], page 19, for a detailed discussion of lexical matters. The
syntax rules are given in BNF with the following extensions:

• { } denotes repetition; the enclosed elements may be repeated zero or more times.
• [ ] denotes optional parts; the enclosed elements may be omitted.

The left-hand and right-hand sides of syntax rules are separated with a colon, and the |
symbol denotes different alternatives. Identifiers stand for nonterminal grammar symbols,
and terminal symbols are enclosed in single quotes.

In order to keep the grammar to a reasonable size, it does not specify the precedence
of operator symbols. Expressions are parsed according to the precedence and associativity
of operator symbols specified in Section 6.4 [Built-In Operators], page 33. A ‘=’ symbol
occuring unparenthesized in an equation separates left- and right-hand side.

script : {declaration|definition}

declaration : ’import’ module-spec {’,’ module-spec} ’;’
| ’include’ module-spec {’,’ module-spec} ’;’

| prefix headers ’;’
| [scope] ’type’ unqualified-identifier

[’:’ identifier] [’=’ sections] ’;’
| [scope] ’extern’ ’type’ unqualified-identifier

[’:’ identifier] ’;’
| [scope] ’type’ qualified-identifier

[’as’ unqualified-identifier] ’;’

| ’@’ [’+’|’-’] unsigned-number

module-spec : module-name [’as’ unqualified-identifier]
module-name : unqualified-identifier

| string

prefix : scope
| [scope] modifier {modifier}

scope : ’private’|’public’

modifier : ’const’|’special’|’extern’|’var’

headers : header {’,’ header}

header : unqualified-identifier
{[’~’] variable-identifier}

| qualified-identifier
{[’~’] variable-identifier}
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’as’ unqualified-identifier ’;’

sections : section {’|’ section}

section : [prefix] headers

definition : expression ’=’ expression qualifiers ’;’
{’=’ expression qualifiers ’;’}

| ’def’ expression ’=’ expression
{’,’ expression ’=’ expression} ’;’

| ’undef’ identifier {’,’ identifier} ’;’

qualifiers : {qualifier}

qualifier : condition
| where-clause

condition : ’if’ expression
| ’otherwise’

where-clause : ’where’ expression ’=’ expression
{’,’ expression ’=’ expression}

expression : identifier
| variable-identifier ’:’ identifier
| number
| string
| expression expression
| unary-op expression
| expression binary-op expression
| ’(’ [element-list] ’)’
| ’[’ [element-list] ’]’
| ’(’ op ’)’
| ’(’ expression binary-op ’)’
| ’(’ binary-op expression ’)’

element-list : expression-list [’|’ expression]

expression-list : expression {’,’ expression}

op : unary-op|binary-op

unary-op : ’-’|’#’|’not’|’’’|’‘’|’~’

binary-op : ’^’|’!’|’++’|’+’|’-’|’\’|’*’|’/’|’div’|’mod’
| ’and’|’or’|’and’ ’then’|’or’ ’else’
|’<’|’>’|’=’|’<=’|’>=’|’<>’|’||’

identifier : unqualified-identifier
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| qualified-identifier

qualified-identifier : unqualified-identifier ’::’
unqualified-identifier

unqualified-identifier : variable-identifier
| function-identifier

variable-identifier : uppercase-letter {letter|digit}
| ’_’

function-identifier : lowercase-letter {letter|digit}

number : [’-’] unsigned-number
unsigned-number : ’0’ octdigitseq

| ’0x’ hexdigitseq
| ’0X’ hexdigitseq
| digitseq [’.’ [digitseq]] [scalefact]
| [digitseq] ’.’ digitseq [scalefact]

digitseq : digit {digit}
octdigitseq : octdigit {octdigit}
hexdigitseq : hexdigit {hexdigit}

scalefact : ’E’ [’-’] digitseq
| ’e’ [’-’] digitseq

string : ’"’ {char} ’"’

letter : uppercase-letter|lowercase-letter
uppercase-letter : ’A’|...|’Z’
lowercase-letter : ’a’|...|’z’|’_’

digit : ’0’|...|’9’
octdigit : ’0’|...|’7’
hexdigit : ’0’|...|’9’|’a’|...|’f’|’A’|...|’F’

char : any character but newline and "
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Appendix B Using Q

The following discussion assumes that you have already installed the Q programming
system on your machine. In particular, you should make sure that the programs q and qc
have been copied to a directory which is searched for executables, and that the standard
library scripts have been installed properly.

You may also refer to the UNIX manual page q(1) for a brief description of the Q
programs.

The Q programming system consists of two main parts: the compiler and the interpreter.
The compiler is used to translate Q scripts into a binary format, a so-called “bytecode”
file, which is then executed by the interpreter. Since the interpreter invokes the compiler
automatically when you invoke it with a source script, you usually do not have to care about
the compiler yourself. But if you wish you can also run compiler and interpreter separately.

B.1 Running Compiler and Interpreter

Here is how you normally run a script with the interpreter:

q [options] [ source-or-code-file [argument ...] ]

The interpreter will then start up, display its prompt, and wait for you to type some
expressions or other commands (see Section B.2 [Command Language], page 181). You
can exit the interpreter by typing quit (which invokes the built-in quit function), or by
entering the end-of-file character at the beginning of the input line.

At most one source or code file may be specified; the remaining command line arguments
can be accessed in the interpreter by means of the built-in ARGS variable. If the given file
is in bytecode format, it is loaded immediately. Otherwise, the interpreter invokes the
compiler to translate the source script to a temporary code file. Then, if the source script
was translated successfully, the interpreter loads the generated code file and you can start
typing in expressions and commands. (After the code file has been loaded by the interpreter,
it is no longer needed and is discarded immediately. If you want to keep the code file, you
must invoke the compiler separately, see below.)

Scripts and code files which have no absolute path specified are searched for on Q’s
library path (as given by the QPATH shell environment variable or with the --path option,
see below). As with the PATH environment variable, the individual directories are separated
with a colon ‘:’ (semicolon ‘;’ on DOS/Windows systems). The directories are searched in
the indicated order; if the file cannot be found on the search path, an attempt is made to
open it by its name. You should include the ‘.’ directory in the search path if you wish
to search the current directory prior to other locations. The default search path is usually
something like .:/usr/share/q/lib:/usr/lib/q which causes compiler and interpreter
to first search the current directory, and then other (system-dependent) locations where
“library scripts” are kept.

By default, the interpreter automatically includes the prelude.q script (which will be
searched for on the library path as usual) as the first module in your program. The prelude
provides the definitions which are available without explicit import or include; normally it
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is used to include the standard library, see Chapter 4 [Scripts and Modules], page 23. You
can also suppress the automatic inclusion of the prelude with the --no-prelude compiler
option, see below, or provide your own, see Section B.3 [Setting up your Environment],
page 187.

The interpreter can also be invoked with no arguments at all, in which case an empty
script is assumed. This means that only the built-in operations of the Q language will
be available, as well as the definitions in the prelude.q script (unless the --no-prelude
option has been specified). (If you want to specify an empty script while still supplying
arguments, specify "" as the script name.)

If you want to avoid recompilations of large scripts, you can also run compiler and
interpreter separately. For this purpose, you first invoke the compiler as described below to
translate your script(s) to a bytecode file. Then you can invoke the interpreter, specifying
the name of the bytecode file (normally q.out, unless another code file name has been
specified with the -o compiler option). The interpreter can then load the bytecode file and
start execution immediately.

The compiler is executed as follows:

qc [options] [source-file ...]

It compiles the specified files and writes the resulting bytecode to the code file, normally
q.out. Note that multiple source files may be specified. The first file denotes the main
script, whose namespace defines the global scope; the name of the main script can also
be missing or be specified as the empty string "", to indicate an empty main script. The
remaining source files are additional scripts to be imported into the global scope.

The compiler recognizes the following options:

--help, -h
Print a short help message.

--list=list-file, -l list-file
When this option is used, error messages are written to the specified file instead
of the standard error device.

--no-code, -n
This option suppresses code file generation, which is useful if you only want to
check the given scripts for syntax errors.

--no-prelude
Suppresses automatic inclusion of the prelude.

--output=output-file, -o output-file
This option allows you to change the default name of the generated code file.

--path=path, -p path
This option sets the library path used to search for source and code files (default:
system-dependent hardcoded default or value of the QPATH shell variable). If
the path argument starts or ends with the path delimiter (‘:’ on UNIX) then
the given path is appended or prepended to the current path, respectively.
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--prelude=file
Specify the name of the prelude script (default: prelude.q).

--tablesize=size, -t size
This option allows you to determine the size of the runtime hash table used
for the hashing of identifiers. For best performance this should be a prime
number; the default size is 5711. With this option, you can change the size of
the hash table if you are compiling a script with a very large number of function
symbols, or a script which dynamically creates a lot of symbols. Inreasing the
size of the hash table will reduce the “load” of the table and thereby improve
the performance of symbol hashing at runtime.

--verbose, -v
Display processed source files and statistics.

--version, -V
This option causes version number and copyright information to be displayed,
after which the program terminates.

Options are generally parsed using getopt which means that multiple single-letter op-
tions may be combined (e.g., -vn) and a parameterized option can be followed immediately
by the corresponding argument (e.g., -ofoo.out); see getopt in Section 3 of the UNIX
manual for details. All programs also accept long option names following the GNU conven-
tions, e.g., you can use --output instead of -o. Note that in the case of parameterized long
options the parameter must either follow in the next command line argument, or it must
be separated from the option name by a = character. Long options may be abbreviated
by an unambigious prefix of the option name. For instance, you may use --out instead of
--output. Option parsing ends as soon as the -- option is found; the remaining command
line arguments are taken as normal parameters, even if they start with ‘-’.

After a script has been compiled, you can invoke the interpreter on the generated code
file as already discussed above (in this case, the code file is not discarded). Below we
describe the options which are accepted by the interpreter. Note that the interpreter also
recognizes all of the compilation options discussed above, and will pass them on when it
invokes the compiler.

--break This option causes invokation of the debugger in case of an exception like Ctl-
C, invalid rule qualifier, user-raised exception (throw), or a call to the builtin
break function. See Appendix D [Debugging], page 199, for details.

--command=cmd, -c cmd
This option instructs the interpreter to execute the given command in “batch
mode” (see below).

--debug, -d
This option causes activation of the debugger. See Appendix D [Debugging],
page 199, for details.

--debug-options
Set various options which control how much detail the debugger prints when
showing a reduction or rule. See Appendix D [Debugging], page 199, for details.
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--dec, --hex, --oct
Sets the integer output format to decimal (default), hexadecimal or octal, re-
spectively.

--echo, -e
Enable the echoing of commands when running in batch mode.

--exitrc=file
This option allows you to specify the name of the file which is executed when
the interpreter is exited; the default is usually ~/.qexitrc.

--fix[=prec], --sci[=prec], --std[=prec]
Sets the floating point output format to fixed point, scientific (always using
exponents) or standard (only using exponents if it results in a shorter notation;
this is the default). For the scientific and standard formats, the given precision
denotes the number of significant digits to be printed, and defaults to 15. For
the fixed point format, the precision specifies the number of digits following the
decimal point (2 by default).

--gc[=tolerance]
Enables the built-in garbage collector which defragments the heap after each
evaluation (see comments on memory management below).

--gnuclient
Lets the interpreter run as a client of gnuserv(1). This allows the interpreter
to interact with an emacs process driving the interpreter, e.g., in “comint”
mode. In particular, the edit and help commands of the interpreter (see
Section B.2 [Command Language], page 181) will then be handled by sending
corresponding Emacs Lisp commands via the gnuclient command instead of
processing them directly. The actual name of the gnuclient program can be set
using the GNUCLIENT_PROGRAM environment variable. Note that this option also
disables the interpreter’s own history processing as it is assumed that emacs
takes care of it.

--help, -h
Print a short help message.

--histfile=file
Specify the name of the file in which the command history is stored (default:
~/.q_history).

--histsize=size
Specify the size of the command history (default: 500).

--initrc=file
Specify the name of the file which is executed at startup (default: ~/.qinitrc).

--interactive, -i
Indicates that the interpreter is running interactively.

--memsize=size
Specify the maximum size of the expression heap (default: 4096000; see com-
ments on memory management below).
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--no-editing
Disable command line editing using readline.

--no-exitrc
Suppress execution of the exitrc file.

--no-initrc
Suppress execution of the initrc file.

--path=path, -p path
As with qc, sets the library path used to search for source and code files.

--prompt=str
Set the prompt string (default: ‘\n==> ’).

--quiet, -q
This option causes a quiet startup; it suppresses the sign-on message.

--source=file, -s file
Source file with interpreter commands (batch mode).

--stacksize=size
Specify the maximum size of the internal stacks (default: 1024000; see com-
ments on memory management below).

--version, -V
As with qc, display version number and copyright information.

Options for Interactive and Batch Usage

Unless one of the -c and -s options is specified, the interpreter starts up in interactive
mode, in which the user is repeatedly prompted to enter an expression, and the interpreter
answers with the corresponding normal form. The interpreter also understands some other
special commands, which are discussed in Section B.2 [Command Language], page 181.
With the -c and -s options, the interpreter runs in batch mode, in which it executes the
commands and command files specified on the command line, prints the results on the
standard output device, and then exits immediately. The -d option invokes the symbolic
debugger built into the interpreter which allows you to trace evaluations, cf. Appendix D
[Debugging], page 199.

When the interpreter starts up in interactive mode, and is connected to a terminal, it also
provides a command history through the GNU readline library. (See section “Command
Line Editing” in The GNU Readline Library .) That is, the lines you type are memorized,
and you can search for and edit previous commands. The command history is also saved
to a file when the interpreter is exited, and completion of filenames, keywords, command
names and defined function and variable symbols is supported as well. You can disable this
feature with the --no-editing option.

You can redirect the interpreter’s input and output streams to a file or a pipe as usual.
The Q interpreter checks whether it is connected to a terminal in order to prevent garbled
output when input or output is redirected. If you’re feeling adventurous, try something like
the following:
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q -d <<EOF
def Xs = nums 1 50
msort (<) (reverse Xs)
EOF

The -i option can be used to force the interpreter to interactive mode even when input or
output is redirected. This causes sign-on and prompt to be printed, and the standard output
buffers to be flushed after each evaluation, which is useful when another program is driving
the interpreter. (If you still want to suppress the sign-on message, use -i in combination
with -q.) Furthermore, the -i option also suppresses the batch mode execution of -c and
-s options.

The --initrc and --exitrc options allow you to specify command files which are
executed when the interpreter starts and exits, which is commonly used to customize the
environment when running the interpreter interactively, see Section B.3 [Setting up your
Environment], page 187. The execution of these files will be suppressed when the interpreter
is run in batch mode, or when using the --no-initrc and --no-exitrc options.

Memory Management

The Q interpreter has a fully dynamic memory management system. In particular, it
automatically resizes both the expression heap and the evaluation stack as required during
the course of a computation. Thus you normally do not have to worry about memory
management issues.

However, the --stacksize option allows you to specify a maximum size for the eval-
uation stack (more precisely, it sets the limit for both the expression and the rule stack),
which keeps the stack from growing to infinity. This is useful, e.g., to catch infinite recur-
sion. Note that as the stack is also used internally for the purpose of parsing expressions, a
reasonable minimum size is required for the interpreter to function properly. Therefore the
interpreter enforces that the given size is not less than a certain minimum value (usually
100); otherwise the option is ignored and the stack size is reset to its default value.

Similarly, the --memsize option limits the number of expression nodes on the heap and
thereby prevents the interpreter from using up all available main memory on your system.
You can disable both limits by specifying 0 as the argument to the corresponding option.

The interpreter manages expression memory using a reference counting scheme, thus no
disruptive “garbage collection” process has to be invoked during an evaluation. However,
the interpreter does have a built-in garbage collector for the purpose of defragmenting
the expression heap and returning unused expression memory to the system after each
evaluation. This functionality is not required for proper operation of the interpreter and
is disabled by default. You might wish to enable it with the --gc option if conservative
memory usage is required.

The --gc[=tolerance] option causes the garbage collector to be called after an expression
evaluation if the percentage of free expression cells exceeds the given tolerance. For instance,
a tolerance value of 50 means that unused expression memory will be returned to the system
when the interpreter detects that it uses more than twice the memory required to store all
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expressions on the heap. The default tolerance value of zero forces garbage collection after
each evaluation.

Please note that in the current implementation garbage collection is only performed
after an evaluation has been finished, and only if no secondary threads are still executed in
the background. Moreover, whether the freed memory actually becomes available to other
applications depends on your system’s memory manager. We also remark that in order to
defragment the expression heap, the garbage collector has to copy the current expression
memory to a fresh memory arena, which temporarily needs extra memory and may take
some time if a lot of big expressions are currently on the heap. Allocating the new memory
arena may fail if not enough main memory is available; in this case garbage collection is
abandoned and the interpreter continues to use the old fragmented heap until the garbage
collector is started the next time.

B.2 Command Language

The commands understood by the interpreter make up a simple command language
which is described in the following. Commands can also be passed to the interpreter by
means of the -c option, and you can put a sequence of commands into a file and execute
them using the -s option (see Section B.1 [Running Compiler and Interpreter], page 175).
Command files can also be executed in the interpreter using the source command (see
below). Moreover, when the interpreter starts up and is exited in interactive mode, it
reads and executes commands from its initialization and termination files, which allows you
to customize your environment according to your taste (see Section B.3 [Setting up your
Environment], page 187).

The command language is line-oriented, i.e., commands are terminated by the newline
character. As usual, line ends can be escaped by putting the \ character immediately before
the end of the line; this also works inside of string literals. A line may contain multiple
expressions and commands, which are separated by the ; delimiter:

==> def X = foo Y; X; X/2

(You may also terminate a command line with an extra ; delimiter, but this is not required.)

The three commands used most frequently are the following:

expression or ? expression
Evaluate the given expression and print the resulting normal form.

def expression = expression, ...
Define free variable values.

undef variable, ...
Undefine the given variables.

After a variable has been assigned a value, it will be replaced by its associated value
whenever it is evaluated. This allows you to store intermediate results in a computation,
set the values of free variables occuring in a script, and to define new functions interactively
in the interpreter. For instance:

==> def double = (*) 2, X = double 4; X
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8

A subsequent undef removes the variable definition. For instance:

==> undef X; X
X

As discussed in Section 7.3 [Free Variables], page 46, the left-hand side of a variable
definition may actually be an arbitrary pattern to be matched against the right-hand side
value.

We remark that, when starting up, the interpreter always defines the variables INPUT,
OUTPUT, ERROR and ARGS. INPUT and OUTPUT are set to the standard input/output devices
used by the terminal I/O functions (see Section 10.5.1 [Terminal I/O], page 82), while ERROR
denotes the standard error device normally used to display error messages. You can use
these symbols when passing a file to one of the built-in file I/O functions (see Section 10.5.2
[File I/O], page 83). As already mentioned, the ARGS variable is assigned a string list
which contains the additional command line arguments the Q interpreter was invoked with
(starting with the script name). These variable symbols are “read-only”; they cannot be
re- or undefined.

There is one other special built-in variable, the “anonymous” variable ‘_’, which, when
used in an expression or the right-hand side of a variable definition, refers to the result of
the most recent expression evaluation:

==> 1/3
0.333333333333333

==> 1/_
3.0

Note that expressions and definitions have the same syntax as in the Q language. Besides
this, the interpreter allows you to escape a command to the shell:

! command

The given command is executed using the shell. Unlike the other types of commands, the
shell escape must be on a line by itself.

The interpreter also provides some other special commands which extend the expression
and definition syntax of the Q language. They consist of a command name and possibly
some parameters. Unlike the def and undef keywords, which are also reserved words in
the Q language itself, the command names are only treated specially when occuring at the
beginning of a command; anywhere else they are treated as ordinary Q identifiers. You
can escape a command name at the beginning of a command as an ordinary identifier (and
thereby force the remainder of the command to be treated as an ordinary expression) by
prefixing it with ‘?’. Thus,

==> ? echo "some string"

will evaluate an expression involving some echo function instead of executing the echo
command.
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The parameters of special commands are simply string literals which may be quoted or
unquoted, and which are delimited with whitespace, very much like in the UNIX command
shell. In particular, the interpreter will not try to evaluate these parameters. However, the
usual escapes for special characters are supported. The following table lists the available
commands, where [...] is used to denote optional arguments.

copying Show the GNU license conditions.

help [S] Start the GNU info reader (as specified by the INFO_PROGRAM environment
variable, info by default) with the Q manual; if a keyword S is given, perform
an index search. When the interpreter has been started with the --gnuclient
option (see Section B.1 [Running Compiler and Interpreter], page 175), then
the command submits a request to invoke the info reader of a driving emacs
process using the gnuclient program.

path [S] Set the library search path (QPATH) to S (print the current setting if S is omit-
ted). If the S argument starts or ends with the path delimiter (‘:’ on UNIX)
then the given path is appended or prepended to the current path, respectively.

prompt [S [S2 [S3]]]
Set the prompt string (print the current setting if S is omitted). The \\v,
\\s, \\w, \\W, \\m and \\M escape sequences may be used in the prompt string
to denote the Q version number, host system information, current working
directory, basename of the current directory, full pathname of the current script,
and the script’s basename, respectively. (Note the double escapes; these are
required to make one \ get through to the command.) The optional second and
third argument allow you to change the default continuation (‘> ’) and debugger
prompt (‘: ’); no special escape sequences are substituted in these strings.

dec, hex, oct
Sets the integer output format to decimal, hexadecimal and octal, respectively.

fix [prec], sci [prec], std [prec]
Sets the floating point output format to fixed point, scientific and standard,
respectively (see also the corresponding interpreter command line options in
Section B.1 [Running Compiler and Interpreter], page 175). If the precision is
omitted, it defaults to 2 for the fixed point format, and to 15 otherwise.

histfile [S], histsize [N]
Change the history filename and set the size of the history (print the current
setting if no argument).

stacksize [N]
Set the maximum stack size (print the current setting if no argument); see the
discussion of the --stacksize option in Section B.1 [Running Compiler and
Interpreter], page 175.

memsize [N]
Set the maximum number of expression nodes on the heap (print the current set-
ting if no argument); see the discussion of the --memsize option in Section B.1
[Running Compiler and Interpreter], page 175.
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stats [all]
Print statistics about the most recent expression evaluation in the main thread.
If the optional all parameter is given then the command also lists finished
background threads which have not been recycled yet. The given figures are
the cpu time needed to complete the evaluation, the total number of reductions
performed by the interpreter, and the number of expression nodes (heap cells)
created during the course of the computation. The application of each builtin
rule counts as a single reduction. Note that since different builtin rules may
have different execution times (in fact, the time needed by many of the builtin
operations varies with the size of the input), the number of reductions usually
only provides a rough estimate of the actual running time. But this value is still
quite useful to perform asymptotic analysis (up to linear factors, if one wants to
be picky), and can also be used to compare profiling results obtained on different
machines with different processors. The cell count is the maximum number of
cells required at any time during the evaluation, which does not include the
size of the input expression. This value is used to measure space requirements,
and is proportional to the “real” memory requirements of the interpreter (each
expression node requires some 24 bytes in the current implementation). But
note that subexpressions may be “shared” between different expressions, and
thus the cell count will usually be less than the tree size of the constructed
expressions.

debug [on|off|options]
When invoked with arguments on or off, activate or deactivate debugging;
print the current setting if no argument is specified. Alternatively, you can also
use this command to set various options which control how much detail the
debugger prints when showing a reduction or rule. See Appendix D [Debugging],
page 199, for details.

break [on|off]
This command controls how the interpreter responds to an exception like Ctl-C,
invalid rule qualifier, user-raised exception (throw), or a call to the builtin break
function; see Appendix D [Debugging], page 199, for details. If no argument is
given, the current setting is printed.

echo [on|off], echo S
Enable or disable command echoing (print current setting if omitted), or echo
the given string to standard output (with a newline character appended). When
echoing is enabled, all command lines executed in batch mode (using the -s or
-c option, or the source command) are echoed to standard output before they
are executed. (You can inhibit command echoing by prefixing a command line
with the @ character.)

chdir [S], cd [S]
Change to the given directory (your home directory if none given).

pwd Print the current working directory.
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ls [S ...]
List the contents of the current directory, or the files matching the given pat-
terns. This command simply invokes the corresponding UNIX command with
the given arguments.

which [S]
Print the full name of the script or command file (as given by a search on the
library path) that would be run when the relative pathname S is given to the
run or source command; if invoked without arguments, print the full pathname
of the running script.

edit [S] Edit the given file (current script if none specified), using the editor specified by
the EDITOR environment variable, or vi by default. When the interpreter has
been started with the --gnuclient option (see Section B.1 [Running Compiler
and Interpreter], page 175), then the command causes an edit request to be
submitted to a driving emacs process using the gnuclient program.

run [S [args ...]]
Run the given script with the given arguments. If no script is specified, rerun the
current script with the current arguments. (Note that to force the interpreter
back to an empty script, you can specify "" for the script name.) When in
interactive mode, the exitrc and initrc files are sourced as usual. Note that
this operation also clears the variable memory, so you might wish to save your
variables before invoking this command, unless your exitrc file already takes
care of this.

import [[+|-]S ...]
Rerun the current script with the current arguments, as with run, but also
add or remove the given scripts to/from the current “import list”. A ‘+’ prefix
(or no prefix at all) causes the module to be added to the import list and ‘-’
removes the module, if possible. If no arguments are given then the import list
is cleared. Modules on the import list are imported into the global scope (i.e.,
the namespace of the main script), in addition to the prelude and the imports
of the main script. The current import list can be shown with the imports
command, see below.
Note that you can also add modules which are already included in the running
script, but which are not currently visible in the global scope. On the other
hand, you can only remove those modules which have actually been added to
the import list, not any modules which are only included in the running script.
The main script can be removed as well, which has the same effect as doing run
with an empty script name.
IMPORTANT: This command will only work as advertised when running a
source script. If a bytecode file is run, the import list will be cleared, and
subsequent import commands will have no effect.

source S, . S
Source a file with interpreter commands (may be nested). As indicated, this
command may be abbreviated as ‘.’. The given command file is searched on
the Q library path.
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save [S], load [S]
Save and restore variable values to/from the given file (if no file specified, use
the file last specified with save or load, or .q_vars by default).
The save command stores all user-defined variables in the form of variable
definitions, i.e., def commands. Floating point values are always stored with
maximum internal precision, no matter what the current precision set with the
std, sci or fixed commands is. The built-in variables are not saved with this
command; thus, if you want to also save the value of the ‘_’ variable, you must
explicitly assign it to a user variable.
The load command is very much like source, so the file may actually contain
arbitrary interpreter commands, but no library path search is performed, so a
path must be given unless the file is contained in the current directory.
Putting a pair of load and save commands in your initrc/exitrc files (see
Section B.3 [Setting up your Environment], page 187) is a convenient method to
have the interpreter automatically remember the variable environment from a
previous session. You should note, however, that the load command reevaluates
all values in the context of the current script, and hence the results may be
quite different from the original values if the script has been changed during
invokations of the interpreter. Moreover, on many systems floating point values
cannot always be reconstructed exactly from their textual representations. (On
some systems the interpreter can be built with support for ISO C99 format
conversions which eliminate this problem; see the README file included in the
distribution for details.) Another potential obstacle is that the load command
cannot reconstruct “external” objects (<<typeid>>, see Section 10.5.2 [File I/O],
page 83, and Appendix C [C Language Interface], page 191), since these objects
do not have a parseable representation at all.

clear [variable ...]
Undefine the given variables, or all user-defined variables if no variable is spec-
ified. In the latter case, the command also purges the value of the ‘_’ variable,
but the variables defined by the loaded scripts are not affected.

modules List all loaded modules, i.e., all scripts imported or included in the running
script (including the prelude). External modules are indicated by a trailing ‘*’.

imports Like the modules command, but only list the modules visible in the global
scope. This includes the main script itself, the prelude and all the modules it
includes (normally the standard library), the imports and includes of the main
script, and the extra imports specified with the import command (see above).
The latter modules and the main script are indicated by an initial ‘+’ character.
(These are the modules which can be removed with the import command.)

who [all] List all user-defined variable symbols. This only lists variables which have been
defined in the interpreter. If the optional all parameter is specified then all
variables are listed.

whos symbol ...
Describe the given (function, variable or operator) symbols. Prints useful in-
formation about each symbol, such as whether it is a function symbol or a
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variable, name of the script file in which the symbol is defined, const and
special attributes, etc.

completion_matches S
List the possible completions of a token prefix. This command allows programs
like emacs (see Appendix E [Running Scripts in Emacs], page 203) to implement
completion when driving the interpreter as an inferior process.

B.3 Setting up your Environment

There are basically two ways in which you can tailor the Q interpreter to your needs: you
can provide your own prelude providing “preloaded” function and variable definitions; and
you can use the qinitrc and qexitrc command files to execute a sequence of interpreter
commands when an interactive instance of the interpreter starts up and exits. We describe
each of these in turn.

The prelude, which has already been discussed in Chapter 4 [Scripts and Modules],
page 23, is just an ordinary Q script which is by default imported in all your scripts.
Normally the prelude includes the standard library modules, but you can also provide your
own prelude into which you can put any “standard” definitions you want to have available
in all your scripts. To customize the prelude, you can either modify the version provided
with the standard library (to provide your definitions system-wide), or put your private
version somewhere on your library path where the compiler will find it prior to the standard
one. In the latter case you can still have your version of the prelude include the standard
prelude by renaming the latter using an ‘as’ clause (see Chapter 4 [Scripts and Modules],
page 23). E.g., your prelude.q script may contain something like the following (assuming
the standard prelude is in /usr/share/q/lib):

// include the standard prelude as ‘stdprelude’
include "/usr/share/q/lib/prelude.q" as stdprelude;
// my own definitions here ...

Let us now turn to the interpreter’s initialization and termination files. As already
mentioned, when the interpreter runs in interactive mode, it automatically sources a startup
file (usually named ~/.qinitrc, but you can change this with the --initrc option) before
entering the command loop. Thus you can put some commands in this file which set up
your initial environment, e.g., initialize some variables and load variable definitions from a
previous session. A typical startup file may look as follows:

// sample init file

// common constants
//def inf = 1e999
//def e = exp 1.0
//def pi = 4.0*atan 1.0
//def i = (0,1)

// set your preferred defaults here
//path .:~/q:/usr/share/q/lib:/usr/lib/q
//fix 2
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//stacksize 1024000
//memsize 4096000
//break on
//debug pathnames=y detail=all maxchars=80
prompt "\n\\M>> "

// read variable definitions from .q_vars file
load

Similarly, when the interpreter is exited, it normally sources the ~/.qexitrc file (or
the file named with the --exitrc option), which might take care of saving the values of
currently defined variables:

// sample exit file

// autosave variables
save

// want your daily epigram?
//! fortune

B.4 Running Scripts from the Shell

The Q programming system has been designed primarily to facilitate interactive usage.
However, with a little additional effort it can also be used to create standalone application
programs which are invoked directly from the shell. For this purpose, your script should be
equipped with some “main” function which acts as the entry point to your application. On
UNIX systems, you can then use the #! (“shebang”) notation to specify the Q interpreter
as a language processor to be invoked on the script instead of the shell:

#!/usr/bin/q -cmain

If you include this line (which will be treated as a comment by the Q interpreter) at the
top of your script and give the script execute permissions, most UNIX shells will be able to
execute the script just like any other program. Another typical example is the following,
which passes arguments to the main function:

#!/usr/bin/q -cmain ARGS

Most shells only accept a single argument with #!. This means that you must pass all
compiler and interpreter options in one argument. For instance:

#!/usr/bin/q -dcmain ARGS

Obviously, this can be cumbersome and it also does not allow you to have more than one
parameterized option. As a remedy, the Q compiler and interpreter let you pass options by
including any number of additional “shebang” lines in the format

#! option

at the beginning of the main script. (This even works if there is no #!/usr/bin/q line at
the top of the script.) Note that this is not a shell feature, but an extension provided by the
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Q programming tools. Also note that here the #! symbol and the option must be separated
with whitespace, like so:

#!/usr/bin/q
#! -ofoo
#! -cmain ARGS

Using these facilities, fairly elaborate application setups can be handled which require
setting the environment for a certain installation directory with additional modules and
data files used by the main script. For instance, you can modify the Q path and set a
PROGDIR variable to the installation directory as follows:

#!/usr/bin/q
#! -p/usr/share/myprog:
#! -cdef PROGDIR="/usr/share/myprog"
#! -cmain ARGS

By these means, all the necessary setup information is collected at the beginning of your
main script where it can be changed easily at installation time.
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Appendix C C Language Interface

The Q interpreter provides an interface to the C programming language, which allows
you to extend the interpreter with your own collections of “built-ins” in C modules, in
order to access functions in C libraries and to take advantage of the higher processing speed
of C functions for time-critical applications. We also refer to such C modules interfacing
to the Q interpreter as external modules. On most systems supporting “shared” libraries
(a.k.a. “dll”s), external modules are loaded dynamically at runtime, otherwise they have
to be linked statically with the interpreter’s main program to create a new interpreter
executable. The Q interpreter has its own external module support for MS Windows; on
UNIX systems, it uses the libtool package to implement this functionality. See section
“Shared library support for GNU” in GNU Libtool.

C.1 Compiling a Module

To provide for a platform-independent way of compiling and linking external modules,
the Q programming system includes two tiny additional utilities which take care of the
necessary and sometimes messy compilation details: qcc and qld.

Qcc is the module compiler. After you have prepared an external module (as explained
in Section C.2 [Writing a Module], page 192), you run qcc to compile your module to a
library, a binary file which can be loaded by or linked into the interpreter.

The qcc program will compile each given source file and then invoke the linker on all
object files to produce the output library. The synopsis of the qcc program is as follows:

qcc [options] [source-or-object-file ...] [-- cc-options ... [--link ld-options...]]

As indicated, qcc can process both C source and object files, and extra options can be
passed on to compiler and linker after the -- option. All options understood by the qcc
utility are listed below:

--dry-run, -n
Only print compilation commands, do not actually execute them.

--ext Print the default output file extension and exit. This is usually ‘.la’ on UNIX
systems which denotes a libtool library, or ‘.dll’ on Windows.

--help, -h
Print a short help message and exit.

--keep, -k
Do not delete intermediate files (object files and such) produced during the
compilation process.

--mingw Select the mingw compiler driver. Mingw is the native Windows port of the
well-known GNU C compiler, gcc. This option is the default for dll compilation
on MS Windows.

--msc Select the MS Visual C compiler driver. Use this if you want to compile your
module with the Visual C compiler on Windows.
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--output=file, -o file
Specify the name of the library output file.

--verbose, -v
Echo compilation commands as they are processed.

--version, -V
As with the other Q programming utilities, this option causes version number
and copyright information to be displayed, after which the program terminates.

The Q module linker, qld, is implemented as a shell script (thus it is not supported
on Windows) which simply invokes libtool with the specified -dlopen and -dlpreopen
options to create a new interpreter executable. This is only necessary if your system does
not support shared libraries. Qld is invoked as follows:

qld --help | --version | -o progname [-dlopen module ...]

The --help and --version options (which may also be abbreviated as -h and -V,
respectively) work as usual. All other options are simply passed on to the libtool program,
thus you can actually use any option recognized in libtool’s “link” mode. (See section
“Invoking libtool” in GNU Libtool, for details.) The interpreter executable is written to
the specified output file progname (there is no default for the output file name, so the ‘-o’
option must always be specified).

For a closer description of how qld is used see Section C.3 [Linking and Debugging a
Module], page 197, below.

C.2 Writing a Module

Writing a real external module can be a complicated task, just like any bit of C pro-
gramming which goes beyond mere exercising. We cannot cover this process in detail here,
although we hopefully provide enough information to get you started. You should take a
look at the external modules bundled with the Q distribution for more substantial examples.

The procedure for making a C function callable from the Q interpreter is fairly straight-
forward. You first need a Q script (called a stub) which declares the external C functions
you would like to use in your Q program. Next you have to write a C module which im-
plements these functions. Finally, you run qcc to translate the C module to a library file
which can be loaded by or linked into the interpreter. We discuss each of these steps in
turn.

As a running example, let us implement list reversal in C. Our C version of this function
will be called creverse. We first create a Q script creverse.q, which declares the creverse
function as extern:

// creverse stub
public extern creverse Xs;

This tells the interpreter that when the creverse function is applied to a single argu-
ment, it should invoke the corresponding C function, which is assumed to be found in a
shared library named after the stub script.
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To implement the creverse function, we create a C module cerverse.c. The Q pro-
gramming system comes with an interface library called libq which provides the necessary
operations to inspect Q expressions given as argument values, and to construct new ex-
pressions which can be returned as the result of the function invokation. The interface
operations are declared in the libq.h header file which we include in our C module. The
C module must provide the necessary code for being initialized by the interpreter, which is
done by putting a MODULE “header” at the beginning of the source file. The MODULE macro
takes one argument, the name of the module. The external functions are then declared with
the FUNCTION macro, which takes four arguments: the name of the module, the name of the
external function (as given in the stub script), the name of the argument count variable, and
the name of the argument vector variable. The FUNCTION macro is followed by the C block
giving the definition of the function. In our example, the creverse.c module contains the
following C code:

#include <libq.h>

MODULE(creverse)

FUNCTION(creverse,creverse,argc,argv)
{
/* to be sure, check number of arguments */
if (argc == 1) {

/* expr is the data type used by libq to represent Q expressions;
x is set to the argument expression, y is initialized to the empty
Q list (mknil value) */

expr x = argv[0], y = mknil, hd, tl;
/* iscons(x,...) checks that x is a [|] expression and returns its

head element and tail list */
while (y && iscons(x, &hd, &tl)) {

/* use mkcons to prepend the head element to the list y constructed
so far */

expr z = mkcons(hd, y);
y = z; x = tl;

}
if (!y)

/* signal error condition */
return __ERROR;

else if (isnil(x))
/* well-formed list argument, return the constructed reversal */
return y;

else {
/* argument was not a well-formed list; throw away the constructed

value and indicate failure */
dispose(y);
return __FAIL;

}
} else

return __FAIL;
}
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A description of the various macros and functions provided by the libq library can be
found in the libq.h header file. We remark here that extern functions are treated very
much like the built-in functions provided by the interpreter. The external definition may be
thought of as an “external rule” being applied to a Q expression. The definition may either
return a Q expression, in which case the rule applies, or __FAIL, in which case the rule
fails, and the interpreter goes on to try other equations supplied by the programmer. As a
third alternative, the external definition may also return __ERROR, which causes evaluation
to be aborted with an error message. Also note that built-in functions always take priority.
Thus the interpreter first checks for a built-in rule, then for an external definition, and
finally considers the equations in the Q script. Therefore it is possible to override an
equational function definition with an external function. For instance, we might rename the
creverse function in the declaration in creverse.q to stdlib::reverse, and to reverse
in creverse.c. This makes our definition override the definition of reverse in stdlib.q.
The latter definition will then only be applied when the external definition fails. (This is
what the clib module actually does to override the definition of reverse as well as other
operations in stdlib.q, see Chapter 12 [Clib], page 119.)

We also remark that in order to prevent name clashes between external functions and
ordinary C function names, the external function names are stropped with a special prefix
(this is taken care of by the FUNCTION macro). To call an external function declared with
FUNCTION from within your C module, you must therefore use the FUNCALL macro, which
is invoked with the module name, function name and the argc and argv parameters as
arguments. For instance, you would call the creverse function defined above as follows:

FUNCALL(creverse,creverse,argc,argv)

Back to our example. Before we can actually use the above function in the interpreter,
we have to run qcc to translate the C module to a library object. In our example the
process is fairly simple:

$ qcc creverse.c

If all went well, we now have a libtool library named creverse.la which is accompa-
nied by some other libtool-generated files. (If you are trying this on a Windows system,
you will see a dll file named creverse.dll instead.) If your system supports shared libraries
then you can now simply run the creverse.q script with the Q interpreter as usual:

$ q creverse.q

(If at startup the interpreter complains that it could not load the module then your
system probably does not support shared libraries. In this case you will have to create
a new interpreter executable which links the module into the interpreter, as explained in
Section C.3 [Linking and Debugging a Module], page 197.)

Let’s try it: You probably want to compare the running time of our list reversal function
against a Q version of the same operation, which can be defined as follows (include this in
the creverse.q script):

public qreverse Xs;
qreverse Xs:List = foldl push [] Xs;

The following results were obtained on an Intel PIII-800 PC running Linux:
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==> def l = nums 1 50000

==> def r = creverse l; stats
0.033 secs, 1 reduction, 50000 cells

==> def r = qreverse l; stats
0.471 secs, 100002 reductions, 50004 cells

Not very surprisingly, the C function is indeed much faster, which is due to the extra
pattern matching, value extraction and function call overhead of the interpreter.

It is also possible to declare a Q type as extern, and realize the type in C. Such a
type must always be abstract (i.e., it must not have any constructor symbols, cf. Chapter 8
[Types], page 61), and the only way to get a value of such a type is by means of corresponding
extern functions. For this purpose, the libq library provides the mkobj operation, which
takes as its argument a pointer to the corresponding C object. For instance, consider an
extern type Bar and a corresponding construction function bar declared as:

public extern type Bar;
public extern bar I J; // I and J integer

We might implement this type as a C struct containing a pair of integers as follows:

#include <libq.h>

MODULE(ctype)

typedef struct { long i, j; } Bar;

FUNCTION(ctype,bar,argc,argv)
{

long i, j;
if (argc != 2 || !isint(argv[0], &i) || !isint(argv[1], &j))
return __FAIL;

else {
Bar *v = malloc(sizeof(Bar));
expr x;
if (!v) return __ERROR;
v->i = i; v->j = j;
return mkobj(type(Bar), v);

}
}

Note that objects of an external type are completely “opaque” as far as the interpreter
is concerned (just like file values). In particular, they will be printed using the notation
<<typeid>> in the interpreter:

==> bar 1 2
<<Bar>>
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The only way to access the contents of an external object is by means of corresponding
C functions. For instance, an extern function which converts a Bar object to a tuple may
be implemented as follows. The declaration:

public extern bartuple B;

The corresponding definition in the C module:

FUNCTION(ctype,bartuple,argc,argv)
{
Bar *v;
if (argc == 1 && isobj(argv[0], type(Bar), (void**)&v))

return mktuplel(2, mkint(v->i), mkint(v->j));
else

return __FAIL;
}

Compile and load the script, using the same procedure as above, and try the following:

==> bartuple (bar 1 2)
(1,2)

(It is worth noting here that the isint and mkint functions used above only allow you
to access and create integer values fitting into a machine integer. Integers of arbitrary sizes,
which are represented as GMP mpz_t values, can be dealt with using the ismpz and mkmpz
functions, see the libq.h header files for details.)

As indicated in our example, external objects are usually allocated dynamically, and
will be freed automatically by the interpreter when they are no longer needed. This default
behaviour is appropriate in most cases. However, you can also explicitly define a destructor
function for objects of an external type in your C module as follows:

DESTRUCTOR(ctype,Bar,v)
{
/* we could perform any other necessary cleanup here */
free(v);

}

If such a destructor function is present, it will be used instead of the interpreter’s default
action to call free() when it disposes a Q expression of the corresponding type.

Occasionally, a module will also have some global internal data structures which have
to be initialized and/or finalized. For this purpose, you can declare parameterless functions
using the INIT and FINI macros, which will be executed before the script’s initialization
code, and just before the interpreter exits, respectively. Both macros take the module name
as their single argument:

INIT(name)
{
/* any code to be executed at startup goes here */

}

FINI(name)
{
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/* any code to be executed at termination goes here */
}

Note that the actual order in which the initialization/finalization routines of different
modules are executed is unspecified. Furthermore, initialization routines will be executed
before any of the script’s initialization code (def and undef). Thus these routines should
only be used to perform initializations and cleanup of private data structures of the module.
Other initializations can be performed using appropriate def statements in the stub script.

C.3 Linking and Debugging a Module

If your system does not support shared libraries, or provides no means to dynamically
load a shared library at runtime, you must run the qld program to produce a new interpreter
executable which links in the required module. For instance, we could link the creverse
module from the preceding section into the interpreter as follows:

$ qld -o myq -dlopen creverse.la

(You can also use the -dlpreopen option instead of -dlopen to force the module to be
linked at load time, even if your system supports runtime loading. See section “Link mode”
in GNU Libtool, for more information.)

You then run the script as usual, but using the custom interpreter executable built with
qld instead of the standard ‘q’ program:

$ ./myq creverse.q

Building such a “preloaded” interpreter is also required when you want to debug a
module, in which case the module usually must be linked statically into the interpreter.
You can do this as follows (assuming that your C compiler understands the -g debugging
flag):

$ qcc creverse.c -- -g

$ qld -o myq -static -g -dlopen creverse.la

If you now let your debugger execute ‘myq creverse.q’, you should be able to debug
creverse.c at the source level.
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Appendix D Debugging

The Q interpreter includes a simple symbolic debugger which can be used to trace the
reductions performed during an expression evaluation. In order to use this tool success-
fully, you should be familiar with the way the Q interpreter evaluates expressions; see, in
particular, Section 7.9 [Performing Reductions on a Stack], page 54.

The debugger is subject to activation when one of the following conditions arises:

• The interpreter has been invoked with the -d option, or the user has activated debug-
ging using the debug on command (see Appendix B [Using Q], page 175).

• The interpreter executes the built-in break function on the right-hand side of a rule
(see Section 10.6 [Exception Handling], page 86).

• The user interrupts an evaluation with Ctl-C (see Section 7.11 [Error Handling],
page 59).

• A qualifying condition of a rule does not not evaluate to a truth value (cf. Section 7.7
[Conditional Rules], page 52).

• An exception is raised by the running script, either by using throw or through a trapped
signal, see Section 10.6 [Exception Handling], page 86.

In the first case, the debugger is always invoked as soon as an evaluation is started. In
the remaining cases the debugger is only invoked if the break flag is on. The break flag
is an internal flag of the interpreter which can be controlled with the break command, cf.
Section B.2 [Command Language], page 181. If break is off then all kinds of exceptions
normally cause evaluation to be aborted immediately with an appropriate error message,
and invokations of the break function are simply ignored. (The break flag is off by default,
so you must set it to on before you can catch any break points with the debugger.) Also
note that if there is a pending catch (see Section 10.6 [Exception Handling], page 86) then
the debugger will only be invoked for a call to the break function, if the break flag is on.

When active, the debugger prints each reduction by a built-in or user-defined rule per-
formed during evaluation in the following format:

** left-hand-side ==> right-hand-side

“Tail reductions” (see Section 7.10 [Tail Recursion], page 57) are signaled by a leading ‘++’
instead of ‘**’, global and local variable bindings (cf. Section 7.3 [Free Variables], page 46,
and Section 7.4 [Local Variables], page 47) with a leading --.

Whenever a new rule is activated, and also after processing a qualifier, the debugger
interrupts the evaluation and displays the current rule together with the corresponding
source file name and line number in the format:

level> source-file, line line-number: left-hand-side ==> right-hand-side qualifier

(To remove clutter, the debugger only prints one qualifier at a time, namely the condition
or local definition which is currently being processed.)

The level number printed in front of the rule indicates the position of the printed rule
on the reduction stack (the topmost rule is at level 0). At the ‘:’ prompt, you may then
enter one of the following commands:
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?, help Print a short help message which lists the debugger commands.

options Print a help message which briefly describes debugger options that can be set
with the ‘.’ command.

? expr Evaluate the given expression, with local variables bound to their current values.

. [arg ...]
Reprint the current rule (if invoked without arguments), or set debugger op-
tions.

l [offs] [lines]
List source lines of the current rule. You may specify the number of lines to be
listed (the default is 1), as well as an offset taken relative to the line number of
the current rule (this must be a signed number, with the default being +0).

p [arg] Print stacked rules.

m Print memory usage.

v List the local variables of the current rule.

u [arg], d [arg]
Move up or down on the rule stack.

t, b Move to the top or bottom of the stack.

<CR> Step into the current reduction.

n Next: step over the current reduction.

c Continue: resume evaluation.

h Halt: abort evaluation.

q, <EOF> Quit: exit from the interpreter.

With the debugger being activated, you can simply keep on hitting the carriage return
key to go through an evaluation step by step. The ‘n’ (“next” a.k.a. “step over”) command
causes the interpreter to finish the current rule and also step over any tail reductions; it
then leaves you in the context from which the current rule was invoked (which might be
the interpreter’s command prompt, if you just stepped over the toplevel rule).

The ‘p’ command can be used to print the stack of active rules. The optional integer
argument of this command sets the maximum number of stacked rules to print. The ‘u’,
‘d’, ‘t’ and ‘b’ commands let you move around on the reduction stack; ‘u’ and ‘d’ move up
and down the given number of levels (default: 1), while ‘t’ and ‘b’ take you to the top (i.e.,
topmost rule) and bottom (active rule) of the stack, respectively.

The ‘l’ command lists the source of the current rule. By default, only the line at which
the rule starts is printed. You can specify the number of lines to be listed; e.g., ‘l 5’ causes
five lines to be printed. To have some context of the rule printed, you can also specify a
signed integer denoting the relative offset from the source line; e.g., ‘l -2 5’ causes five lines
to be printed, starting two lines above the current rule. (Both the line count and the offset
are remembered across different invocations of the ‘l’ command.)



Appendix D: Debugging 201

The ‘v’ command lists the local (i.e., “bound”) variables of a rule. This comprises the
variables which are bound by the left-hand side or have already been bound in a where
clause while the rule is being processed. (Note that in the current implementation only
those variables will be listed whose values are actually used somewhere on the right-hand
side or in the qualifiers of the rule.)

The ‘?’ command, when followed by an expression, causes the expression to be evaluated
in the context of the current rule, i.e., local variables are bound to their current values. This
lets you inspect the values of local variables, and perform arbitrary calculations with these
values. Note that debugging mode is suspended while the expression is evaluated, so only
the result (or an error message) will be printed.

At any point, you can use the ‘c’, ‘h’ and ‘q’ commands to continue evaluation without the
debugger, abort an evaluation and return to the interpreter’s prompt, or quit the interpreter,
respectively. The ‘m’ command prints the current memory usage, i.e., the total number of
allocated stack and heap expression cells, along with the corresponding numbers of cells
which are actually in use. For the heap, it also prints the number of expression cells in the
free list, i.e., temporarily unused expression cells below the current heap top. If limits are
set on the maximum number of stack and heap cells, these figures are printed as well.

The current rule can be reprinted using the ‘.’ command. Because Q expressions can
get very large, the debugger usually only prints expression “outlines”; otherwise you could
end up scrolling through pages and pages of printouts for each reduction and rule. The
‘.’ command accepts some options which allow you to set the level of detail you want
to see in the printed reductions and rules; these options will be remembered during an
interpreter session. The options are generally specified in the format option=value and
must not contain any whitespace (blanks or tabs). Multiple options can be specified with
a single ‘.’ command, separating different options with whitespace. Option values can
also be specified in the same format on the interpreter’s command line, using the debug
command (see Section B.2 [Command Language], page 181), or with the interpreter’s -
-debug-options option (see Section B.1 [Running Compiler and Interpreter], page 175).
The following options are provided:

. detail=n
Set the maximum depth (a.k.a. levels of nested parentheses, 2 by default) up
to which expressions are displayed. The debugger will omit all subexpressions
below the current level. Level 1 (‘. detail=1’) means to just print the toplevel
expression, level 2 adds the first-level parentheses, level 3 all second-level paren-
theses, etc. All omitted parts in the expression outline will be represented using
an ellipsis ‘...’. If you set the level to zero, or specify the symbolic value all,
all expressions will be printed to arbitrary depth.

. maxitems=n
Set the maximum number of elements to print for each list or tuple. The default
is 3. A value of 0 or all causes all list and tuple elements to be printed.

. maxchars=n
Set the maximum number of characters to print for each string value. The
default is 33. A value of 0 or all causes all characters to be printed.
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. maxstack=n
Set the number of stack levels to print with the ‘p’ command. The default is
6. A value of 0 or all causes the entire rule stack to be printed. This value is
also modified when an argument is specified with ‘p’.

. pathnames=y|n
Print full pathnames of scripts (‘y’ = yes, ‘n’ = no). The default value of this
option is ‘n’, i.e., only the basenames of scripts are printed. Change this value
to ‘y’ if you want to see the complete path of a script file when a rule is printed.

. options Print the current settings. This option does not modify any settings, but simply
prints all current option values on a single line.

Let us now take a look at a typical session with the debugger. For an example, we take
the definition of the fac function from Section 2.3 [Writing a Script], page 12:

fac N = N*fac(N-1) if N>0;
= 1 otherwise;

The commented session with the debugger follows.

==> fac 1 evaluate fac 1
0> fac.q, line 1: fac 1 ==> 1*fac (1-1) if 1>0 try the first rule . . .

(type ? for help)
: <CR>
** 1>0 ==> true evaluate the qualifier
0> fac.q, line 1: fac 1 ==> 1*fac (1-1)

: <CR>
** 1-1 ==> 0 evaluate 1-1 argument
1> fac.q, line 1: fac 0 ==> 0*fac (0-1) if 0>0 try the first rule on fac 0

: p
stack size: 2 now two rules are on the stack
0> fac.q, line 1: fac 1 ==> 1*fac (1-1)
1> fac.q, line 1: fac 0 ==> 0*fac (0-1) if 0>0

: <CR>
** 0>0 ==> false qualifier fails
1> fac.q, line 2: fac 0 ==> 1 try the second rule . . .

: <CR>
** fac 0 ==> 1 bingo! reduce fac 0 to 1
0> fac.q, line 1: fac 1 ==> 1*fac (1-1) return to the suspended rule

: <CR>
** 1*1 ==> 1
** fac 1 ==> 1 final reduction . . .
1 . . . and the result printed by the

interpreter
==>
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Appendix E Running Scripts in Emacs

The Q programming system also includes an Emacs Lisp program which lets you edit
and run Q scripts in GNU Emacs or XEmacs. The program implements two major modes
q-mode and q-eval-mode for Q source scripts and Q interpreter processes, respectively.
The following discussion is rather terse and incomplete, but if you know Emacs then it
should provide enough information to get you started.

To install Q mode on your system, copy the file q-mode.el from prefix/share/q/etc
(where prefix is the installation prefix you selected at installation time) to your Emacs
site-lisp directory and paste the following lines into your Emacs startup file:

(require ’q-mode)
(setq auto-mode-alist (cons ’("\\.q$" . q-mode) auto-mode-alist))

If you want syntactic fontification (font-lock mode), you also have to add the following
lines:

(add-hook ’q-mode-hook ’turn-on-font-lock)
(add-hook ’q-eval-mode-hook ’turn-on-font-lock)

More installation options are described at the beginning of the q-mode.el file. Once Q
mode is installed and loaded, you can also customize it in Emacs; see the description of the
Customize option below.

Q mode is used for editing Q scripts. With the startup configuration described above,
it is invoked automatically on all files having the .q extension. Q mode provides auto-
indentation and filling, as well as syntactic fontification of keywords, strings, comments,
and variable and type symbols using the font-lock mode which is part of the Emacs
library.

The indentation rules for Q scripts are somewhat unusual for a programming language,
so we briefly summarize them here:

• Declarations start in the first column, with continuation lines being indented by a
certain (configurable) amount. Moreover, initial ‘=’, ‘|’ and ‘;’ symbols are all aligned
in data type declarations.

• Inside rules, an initial ‘=’ is aligned with the most recent equation. The default amount
of ‘=’ indentation can be configured. Auto indentation is also provided for the right-
hand side and qualifier part of a rule. Qualifiers (introduced with if, otherwise and
where) use an extra amount of indentation which can be configured as well.

• In addition, expressions are indented according to their parenthetical structure, as in
Lisp mode.

As usual, indentation of a line is performed with the Tab key. There also is a menu
command for indenting a selected region. Moreover, you can use Esc-Tab at the end of a
line to move the cursor to the indentation position for the = symbol in an equation, and
certain “electric” delimiter symbols like ‘=’ will automatically perform indentation when
typed at the beginning of a line.

The q-run-script command (usually bound to C-c C-c) compiles and runs the script
in the current buffer; you can also use the run-q command (which has no keybinding by
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default) to invoke the interpreter without a script. Both commands create a new buffer
named *q-eval* (if that buffer does not already exist) in which it runs the interpreter.
The *q-eval* buffer is also used to display error messages from the compiler, if any. The
interpreter is used in this buffer as usual, with the only difference that input and output
is done through the buffer. Since this is an ordinary Emacs buffer, you can also save the
buffer to some file to obtain a transcript of your interpreter session.

The *q-eval* buffer uses q-eval-mode as its major mode which is based on comint-
mode, a generic command language interpreter mode which is also part of the Emacs library.
In addition to the facilities provided by Comint mode (such as cycling through a history
of recent commands), Q-Eval mode provides fontification of some special items (strings,
comments and source file references printed by the interpreter), as well as some commands
for locating the source lines referenced by compiler or debugger messages from the inter-
preter. In particular, pressing the return key (or the middle mouse button, when running
under X-Windows) on such a message visits the corresponding source file with the cursor
positioned at the line indicated by the message. You can also scan through the messages
found in the buffer with the following commands:

q-next-msg (C-c C-n), q-prev-msg (C-c C-p)
Show the next/previous compiler/debugger message and visit the corresponding
source line in another window. An optional prefix argument may be used to
specify the number of messages to advance.

q-first-msg (C-c C-a), q-last-msg (C-c C-e)
Show the first/last line in a contiguous sequence of compiler/debugger messages
above/below the current message and visit the corresponding source line.

The above commands can be invoked in both Q and Q-Eval mode, and they are also
accessible from the corresponding Q and Q-Eval menus in the menubar (or the buffer
popup menu obtained with the right mouse button). Some other commands are provided
as well, but you can easily find out about these using the online help facilities of Emacs.
In particular, you should try the describe-mode (C-h m) command which describes the
currently active mode. Another useful command is describe-key (C-h k). You can also
invoke the online version of this manual with C-c C-h.

The Customize option in the Q/Q-Eval menus can be used to set various options of the
interpreter in the Q customization group, which belongs to Emacs’ “Programming Lan-
guages” group. In particular, you should enable the q-gnuclient option in the “Options”
subgroup which synchronizes Emacs with the Q interpreter; e.g., this option allows you to
edit files and read online help using the interpreter’s edit and help commands directly in
Emacs. (For this to work, you must have the gnuserv package, which can be obtained from
the usual elisp archives; see the q-mode.el file for details.)
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